

Series: EFHG4 SET~1

प्रश्न-पत्र कोड Q.P. Code

31/4/1

| रोल नं.  |  |  |  |  |
|----------|--|--|--|--|
| Roll No. |  |  |  |  |

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

|       | नोट                                                                                                                                                          |       | NOTE                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (I)   | कृपया जाँच कर लें कि इस प्रश्न-पत्र में<br>मुद्रित पृष्ठ 23 हैं।                                                                                             | (I)   | Please check that this question paper contains 23 printed pages.                                                                                                         |
| (II)  | कृपया जाँच कर लें कि इस प्रश्न-पत्र में <b>39</b><br>प्रश्न हैं।                                                                                             | (II)  | Please check that this question paper contains <b>39</b> questions.                                                                                                      |
| (III) | ) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए<br>प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका<br>के मुख-पृष्ठ पर लिखें।                                         | (III) | Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.                                    |
| (IV)  | ) कृपया प्रश्न का उत्तर लिखना शुरू करने                                                                                                                      | (IV)  | Please write down the Serial                                                                                                                                             |
|       | से पहले, उत्तर-पुस्तिका में यथास्थान पर                                                                                                                      |       | Number of the question in the                                                                                                                                            |
|       | प्रश्न का क्रमांक अवश्य लिखें।                                                                                                                               |       | answer-book at the given place before attempting it.                                                                                                                     |
| (V)   | इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट<br>का समय दिया गया है। प्रश्न-पत्र का<br>वितरण पूर्वाह्न में 10.15 बजे किया जाएगा।<br>10.15 बजे से 10.30 बजे तक छात्र | (V)   | 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read |



# विज्ञान SCIENCE



निर्धारित समय : 3 घण्टे Time allowed : 3 hours अधिकतम अंक : 80 Maximum Marks : 80

\*31/4/1\* [P.T.O.]





### सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल 39 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क. ख. ग. घ** एवं **ड।**
- (iii) खण्ड क प्रश्न संख्या 1 से 20 तक बहविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- (v) खण्ड ग प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है। इन प्रश्नों के उत्तर 50 से 80 शब्दों में दिए जाने चाहिए।
- (vi) खण्ड घ प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है। इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए।
- खण्ड ड प्रश्न संख्या 37 से 39 तक 3 स्रोत-आधारित/प्रकरण-आधारित इकाइयों के मूल्यांकन के 4 अंकों के प्रश्न (उप-प्रश्नों सहित) हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, कुछ खण्डों में आंतरिक विकल्प दिए गए हैं। इस प्रकार के प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।

### खण्ड – क

प्रश्न संख्या 1 से 20 तक के प्रश्नों में दिए गए चार विकल्पों में से सर्वाधिक उपयुक्त विकल्प चुनिए और लिखिए। गलत उत्तर का ऋणात्मक अंकन नहीं है। प्रत्येक प्रश्न 1 अंक का है।

- निम्नलिखित में से किस एक स्थिति में रासायनिक अभिक्रिया नहीं होती है?
  - (a) गर्मियों में कक्ष ताप पर दूध को खुला रखकर छोड़ देना
  - (b) अंगूरों का किण्वन
  - (c) नमी वाली वायु में किसी आयरन की कील को खुला छोड़ना
  - (d) ग्लेशियर (हिमनदी) का पिघलना
- आर्द्र वायुमंडल में शुष्क हाइड्रोजन क्लोराइड गैस बनाने के लिए उत्पन्न गैस को रक्षक (शुष्क) 2. नली से गुजारा जाता है जिसमें भरा होता है:
  - (a) कैल्सियम क्लोराइड
  - (b) कैल्सियम ऑक्साइड
  - (c) कैल्सियम हाइड्रॉक्साइड
  - (d) कैल्सियम कार्बोनेट

\*31/4/1\*





1



#### General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises 39 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections -A, B, C, D and E.
- (iii) **Section** A Question Nos. 1 to 20 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** Question Nos. **21** to **26** are very short answer type questions. Each question carries **2** marks. Answer to these questions should be in the range of 30 to 50 words.
- (v) **Section C** Question Nos. 27 to 33 are short answer type questions. Each question carries 3 marks. Answer to these questions should in the range of 50 to 80 words.
- (vi) **Section D** Question Nos. **34** to **36** are long answer type questions. Each question carries **5** marks. Answer to these questions should be in the range of 80 to 120 words.
- (vii) **Section E** Question Nos. **37** to **39** are of 3 source-based/case-based units of assessment carrying **4** marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections. Only one of the alternatives has to be attempted in such questions.

#### SECTION - A

Select and write the most appropriate option out of the four options given for each of the questions 1 to 20. There is no negative marking for wrong answer. Each question carries 1 mark.

- 1. In which one of the following situations a chemical reaction does **not** occur?
  - (a) Milk is left open at room temperature during summer
  - (b) Grapes get fermented
  - (c) An iron nail is left exposed to humid atmosphere
  - (d) Melting of glaciers
- 2. In order to prepare dry hydrogen chloride gas in humid atmosphere the gas produced is passed through a guard tube (drying tube) which contains:
  - (a) Calcium chloride
  - (b) Calcium oxide
  - (c) Calcium hydroxide
  - (d) Calcium carbonate

\*31/4/1\*

3

CLICK HERE >>>



1



| 3.   | वह ग्  | ुण जिसके कारण किसी ठोस पदार्थ को तारों में खींचा जा सकता है, कहलाता है :      | 1 |
|------|--------|-------------------------------------------------------------------------------|---|
|      | (a)    | आघातवर्ध्यता                                                                  |   |
|      | (b)    | तन्यता                                                                        |   |
|      | (c)    | दृढ़ता                                                                        |   |
|      | (d)    | प्रतिरोधकता                                                                   |   |
| 4.   | निम्न  | लिखित में से उस हाइड्रोकार्बन को चुनिए जिसमें एक C–C आबन्ध और एक C≡C          |   |
|      | आब     | न्ध होता है :                                                                 | 1 |
|      | (a)    | बेन्जीन                                                                       |   |
|      | (b)    | साइक्लोहेक्सेन                                                                |   |
|      | (c)    | ब्यूटाइन                                                                      |   |
|      | (d)    | प्रोपाइन                                                                      |   |
| 5.   | प्रोटी | नों के संश्लेषण के लिए पौधों द्वारा मृदा से लिया जाने वाला आवश्यक तत्त्व है : | 1 |
|      | (a)    | फॉस्फोरस                                                                      |   |
|      | (b)    | नाइट्रोजन                                                                     |   |
|      | (c)    | आयरन                                                                          |   |
|      | (d)    | मैग्नीशियम                                                                    |   |
| 6.   | लसी    | का के विषय में निम्नलिखित में से <b>सही</b> कथन चुनिए :                       | 1 |
|      | A.     | लसीका वाहिकाएं लसीका को शरीर के विभिन्न भागों तक ले जाती हैं जो अंत में बड़ी  |   |
|      |        | धमनियों में खुलती हैं।                                                        |   |
|      | B.     | लसीका में कुछ मात्रा में प्लैज़्मा, प्रोटीन और रुधिर कोशिकाएँ होती हैं।       |   |
|      | C.     | लसीका में कुछ मात्रा में प्लैज़्मा, प्रोटीन और लाल रुधिर कोशिकाएँ होती हैं।   |   |
|      | D.     | लसीका वाहिकाएं लसीका को शरीर के विभिन्न भागों तक ले जाती हैं जो अंत में बड़ी  |   |
|      |        | शिराओं में खुलती हैं।                                                         |   |
|      | इनमें  | सही कथन हैं :                                                                 |   |
|      | (a)    | A और B                                                                        |   |
|      | (b)    | B और D                                                                        |   |
|      | (c)    | A और C                                                                        |   |
|      | (d)    | C और D                                                                        |   |
| *31. | /4/1*  | 4                                                                             |   |



| 3. |      | property by virtue of which a solid material can be drawn into thin es is called: malleability ductility rigidity resistivity | 1 |
|----|------|-------------------------------------------------------------------------------------------------------------------------------|---|
| 4. | Sele | ect from the following a hydrocarbon having one C-C bond and one                                                              |   |
|    | C≡C  | C bond:                                                                                                                       | 1 |
|    | (a)  | Benzene                                                                                                                       |   |
|    | (b)  | Cyclohexane                                                                                                                   |   |
|    | (c)  | Butyne                                                                                                                        |   |
|    | (d)  | Propyne                                                                                                                       |   |
| 5. |      | essential element taken up from the soil by the plants to synthesize eins is:                                                 | 1 |
|    | (a)  | Phosphorus                                                                                                                    |   |
|    | (b)  | Nitrogen                                                                                                                      |   |
|    | (c)  | Iron                                                                                                                          |   |
|    | (d)  | Magnesium                                                                                                                     |   |
| 6. | Sele | ect TRUE statements about lymph from the following:                                                                           | 1 |
|    | A.   | Lymph vessels carry lymph through the body and finally open into larger arteries.                                             |   |
|    | В.   | Lymph contains some amount of plasma, proteins and blood cells.                                                               |   |
|    | C.   | Lymph contains some amount of plasma, proteins and red blood cells.                                                           |   |
|    | D.   | Lymph vessels carry lymph through the body and finally open into larger veins.                                                |   |
|    | The  | true statements are :                                                                                                         |   |
|    | (a)  | A and B                                                                                                                       |   |
|    | (b)  | B and D                                                                                                                       |   |
|    | (c)  | A and C                                                                                                                       |   |
|    | (d)  | C and D                                                                                                                       |   |
|    |      |                                                                                                                               |   |







| 7.  | गुलाब और केले जैसे पौधों ने निम्नलिखित में से किसे उत्पन्न करने की क्षमता खो दी है?                           | 1 |
|-----|---------------------------------------------------------------------------------------------------------------|---|
|     | (a) पुष्प                                                                                                     |   |
|     | (b) कलिकाएं                                                                                                   |   |
|     | (c) ৰী <b>ज</b>                                                                                               |   |
|     | (d) फल                                                                                                        |   |
| 8.  | उभयलिंगी पुष्प में नर युग्मक कहाँ उपस्थित होते हैं?                                                           | 1 |
|     | (a) परागकोश                                                                                                   |   |
|     | (b) अण्डाशय                                                                                                   |   |
|     | (c) वर्तिकाग्र                                                                                                |   |
|     | (d) तंतु                                                                                                      |   |
| 9.  | जब मटर के शुद्ध लम्बे पौधों का मटर के शुद्ध बौने पौधों के साथ संकरण कराया जाता है, तो                         |   |
|     | $\mathrm{F}_1$ और $\mathrm{F}_2$ संततियों के मटर के पौधों में लम्बे मटर के पौधों की प्रतिशतता होगी क्रमशः $-$ | 1 |
|     | (a) 100%; 25%                                                                                                 |   |
|     | (b) 100%; 50%                                                                                                 |   |
|     | (c) 100%; 75%                                                                                                 |   |
|     | (d) 100%; 100%                                                                                                |   |
| 10. | 20 cm फोकस दूरी के किसी लेंस का उपयोग करके पर्दे पर –1 आवर्धन का प्रतिबिम्ब प्राप्त                           |   |
|     | करने के लिए बिम्ब-दूरी होनी चाहिए :                                                                           | 1 |
|     | (a) 20 cm से कम                                                                                               |   |
|     | (b) 30 cm                                                                                                     |   |
|     | (c) 40 cm                                                                                                     |   |
|     | (d) 80 cm                                                                                                     |   |
| 11. | प्रकाश के किसी पतले समान्तर पुंज के मार्ग में कोई प्रकाशिक युक्ति 'X' तिरछी रखी है। यदि                       |   |
|     | निर्गत प्रकाश पुंज पार्श्विक विस्थापित हो जाता है, तो युक्ति 'X' है :                                         | 1 |
|     | (a) समतल दर्पण                                                                                                |   |
|     | (b) उत्तल लेंस                                                                                                |   |
|     | (c) कांच का स्लैब                                                                                             |   |
|     | (d) कांच का प्रिज़्म                                                                                          |   |
|     |                                                                                                               |   |
|     |                                                                                                               |   |
|     |                                                                                                               |   |



| 7.  | Plants like rose and banana have lost the capacity to produce:                                                                                                                                                                                   | 1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (a) flowers                                                                                                                                                                                                                                      |   |
|     | (b) buds                                                                                                                                                                                                                                         |   |
|     | (c) seeds                                                                                                                                                                                                                                        |   |
|     | (d) fruits                                                                                                                                                                                                                                       |   |
| 8.  | In a bisexual flower the male gametes are present in the:                                                                                                                                                                                        | 1 |
|     | (a) anther                                                                                                                                                                                                                                       |   |
|     | (b) ovary                                                                                                                                                                                                                                        |   |
|     | (c) stigma                                                                                                                                                                                                                                       |   |
|     | (d) filament                                                                                                                                                                                                                                     |   |
| 9.  | When a pure-tall pea plant is crossed with a pure-dwarf pea plant, the percentage of tall pea plants in $F_1$ and $F_2$ generation pea plants will be respectively:  (a) $100\%$ ; 25%  (b) $100\%$ ; 50%  (c) $100\%$ ; 75%  (d) $100\%$ ; 100% | 1 |
| 10. | To get an image of magnification –1 on a screen using a lens of focal length 20 cm, the object distance must be:  (a) Less than 20 cm  (b) 30 cm                                                                                                 | 1 |
|     | (c) 40 cm                                                                                                                                                                                                                                        |   |
| 11. | (d) 80 cm  An optical device 'X' is placed obliquely in the path of a narrow parallel beam of light. If the emergent beam gets displaced laterally, the device 'X' is:  (a) plane mirror                                                         | 1 |
|     | (b) convex lens                                                                                                                                                                                                                                  |   |
|     | (c) glass slab                                                                                                                                                                                                                                   |   |
|     | (d) glass prism                                                                                                                                                                                                                                  |   |
|     |                                                                                                                                                                                                                                                  |   |







| 12. | प्रतिरोध 'R' के किसी तार के टुकड़े को लम्बाई में (अनुदैर्घ्य) तीन सर्वसम भागों में काटा                                                                                        |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | गया है। इन तीनों भागों को फिर पार्श्व में संयोजित किया गया है। यदि इस संयोजन का तुल्य                                                                                          |   |
|     | प्रतिरोध R' है, तो R/R' का मान होगा :                                                                                                                                          | 1 |
|     | (a) 1/9                                                                                                                                                                        |   |
|     | (b) 1/3                                                                                                                                                                        |   |
|     | (c) 3                                                                                                                                                                          |   |
|     | (d) 9                                                                                                                                                                          |   |
| 13. | किसी विद्युत बल्ब का अनुमतांक 220 V; 11W है। 220 V की शक्ति आपूर्ति द्वारा                                                                                                     |   |
|     | प्रचालित किए जाने पर चमकते समय इसके तन्तु (फिलामेन्ट) का प्रतिरोध क्या होता है?                                                                                                | 1 |
|     | (a) $4400 \Omega$                                                                                                                                                              |   |
|     | (b) $440 \Omega$                                                                                                                                                               |   |
|     | (c) $400 \Omega$                                                                                                                                                               |   |
|     | (d) $20 \Omega$                                                                                                                                                                |   |
| 14. | 240 V की मेन्स द्वारा आपूर्ति किए जाने पर 4V; 6W अनुमतांक के कम से कम कितने                                                                                                    |   |
|     | सर्वसम बल्बों को श्रेणी में संयोजित किया जाना चाहिए ताकि वे वांछित चमक से सुरक्षित                                                                                             |   |
|     | रूप से कार्य करें?                                                                                                                                                             | 1 |
|     | (a) 20                                                                                                                                                                         |   |
|     | (b) 40                                                                                                                                                                         |   |
|     | (c) 60                                                                                                                                                                         |   |
|     | (d) 80                                                                                                                                                                         |   |
| 15. | नीचे दी गयी आहार शृंखलाओं में से उस आहार शृंखला को चुनिए जो ऊर्जा के पदों में सबसे                                                                                             |   |
|     | नाच दो गया आहार मृखलाओं में से उसे आहार मृखला का चुनिए जा ऊजा के पदा में सबस                                                                                                   |   |
|     | अधिक दक्ष है :                                                                                                                                                                 | 1 |
|     |                                                                                                                                                                                | 1 |
|     | अधिक दक्ष है :                                                                                                                                                                 | 1 |
|     | अधिक दक्ष है : $(a)  \text{घास} \to \text{टिड्डा} \to \mathring{\text{+}} \tilde{\text{c}} \text{ a} \to \text{स} \acute{\text{प}}$                                            | 1 |
|     | अधिक दक्ष है : $(a)  \text{घास} \to \text{टिड्डा} \to \text{मेंढक} \to \text{स}\text{प}$ $(b)  \text{पौधे} \to \text{हिरण} \to \text{शेर}$                                     | 1 |
|     | अधिक दक्ष है : $(a)  \text{घास} \to \text{टिड्डा} \to \text{मेंढक} \to \text{स}\text{प}$ $(b)  \text{पौधे} \to \text{हिरण} \to \text{शेर}$ $(c)  \text{पौधे} \to \text{म-ŋez}$ | 1 |



|     | 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                         |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 12. | A piece of wire of resistance 'R' is cut lengthwise into three identical parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the value of R/R' is: | 1 |
|     | (a) 1/9                                                                                                                                                                                                        |   |
|     | (b) 1/3                                                                                                                                                                                                        |   |
|     | (c) 3                                                                                                                                                                                                          |   |
|     | (d) 9                                                                                                                                                                                                          |   |
| 13. | An electric bulb is rated 220 V; 11W. The resistance of its filament when it glows with a power supply of 220 V is :                                                                                           | 1 |
|     | (a) $4400 \Omega$                                                                                                                                                                                              |   |
|     | (b) $440 \Omega$                                                                                                                                                                                               |   |
|     | (c) $400 \Omega$                                                                                                                                                                                               |   |
|     | (d) $20 \Omega$                                                                                                                                                                                                |   |
| 14. | The minimum number of identical bulbs of rating 4V; 6W, that can work safely with desired brightness, when connected in series with a 240 V mains supply is:                                                   | 1 |
|     | (a) 20                                                                                                                                                                                                         |   |
|     | (b) 40                                                                                                                                                                                                         |   |
|     | (c) 60                                                                                                                                                                                                         |   |
|     | (d) 80                                                                                                                                                                                                         |   |
| 15. | In the food chains given below. Select the most efficient food chain in terms of energy:                                                                                                                       | 1 |
|     | (a) Grass $\rightarrow$ Grasshopper $\rightarrow$ Frog $\rightarrow$ Snake                                                                                                                                     |   |
|     | (b) Plants $\rightarrow$ Deer $\rightarrow$ Lion                                                                                                                                                               |   |
|     | (c) Plants $\rightarrow$ Man                                                                                                                                                                                   |   |
|     | (d) Phytoplankton $\rightarrow$ Zooplankton $\rightarrow$ Small Fish $\rightarrow$ Big Fish                                                                                                                    |   |
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                          |   |





16. किसी आहार शृंखला में निम्नलिखित में से किस एक का विभिन्न पोषी स्तरों पर जैव आवर्धन होता जाता है? 1 कार्बन मोनोऑक्साइड (a) CFC's (b) **DDT** (c) (d) खाद प्रश्न संख्या 17 से 20 तक अभिकथन (A) और कारण (R) पर आधारित प्रश्न हैं। इन प्रश्नों के उत्तर नीचे दिए (a), (b), (c) और (d) में से उचित विकल्प चुनकर दीजिए: अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है। (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R) अभिकथन (A) की सही व्याख्या **नहीं** करता है। अभिकथन (A) सही है, परन्तु कारण (R) गलत है। अभिकथन (A) गलत है, परन्तु कारण (R) सही है। 17. अभिकथन (A): बड़े जन्तुओं में ऑक्सीजन, जन्तुओं के शरीर के विभिन्न भागों में आसानी से पहुंच सकती है। श्वसन वर्णक वायु से ऑक्सीजन लेकर उसे शरीर के ऊत्तकों तक पहुंचाते कारण (R): हैं। 1 अभिकथन (A): सांद्र नाइट्रिक अम्ल का तनुकरण जल को सदैव धीरे-धीरे तथा अम्ल को लगातार हिलाते हुए जल मिलाकर किया जाता है। सांद्र नाइट्रिक अम्ल जल में आसानी से घुल जाता है। कारण (R): 1 19. अभिकथन (A): सरीसृपों में संततियों का लिंग निषेचित अण्डे (युग्मक) के उष्मायन ताप द्वारा सुनिश्चित होता है। कुछ जीवों में लिंग निर्धारण आनुवंशिकतः नहीं होता है। कारण (R): 1 20. अभिकथन (A): जब पक्ष्माभी पेशियाँ सिकुड़ती हैं, तो नेत्र लेंस पतला हो जाता है। पक्ष्माभी पेशियाँ नेत्र लेंस की क्षमता को नियंत्रित करती हैं। कारण (R): 1 \*31/4/1\*



| 16.  | Which one of the chain?          | ne following gets biomagnified at different levels in a food                                          | 1     |
|------|----------------------------------|-------------------------------------------------------------------------------------------------------|-------|
|      | (a) Carbon mo                    | onoxide                                                                                               |       |
|      | (b) CFC's                        |                                                                                                       |       |
|      | (c) DDT                          |                                                                                                       |       |
|      | (d) Manure                       |                                                                                                       |       |
| Que  | estion Nos. 17 to                | 20 consist of two statements – Assertion (A) and Reason                                               | (R).  |
| Ans  | wer these quest                  | tions selecting the appropriate option (a), (b), (c) and (d                                           | l) as |
| give | en below:                        |                                                                                                       |       |
| (a)  | Both, Assertion explanation of A | (A) and Reason (R) are true, and Reason (R) is the correct Assertion (A).                             |       |
| (b)  |                                  | (A) and Reason (R) are true, and Reason (R) is <b>not</b> the tion of Assertion (A).                  |       |
| (c)  | Assertion (A) is                 | true, but Reason (R) is false.                                                                        |       |
| (d)  | Assertion (A) is                 | false, but Reason (R) is true.                                                                        |       |
| 17.  | Assertion (A):                   | In large animals, oxygen can reach different parts of the animal's body easily.                       |       |
|      | Reason (R):                      | Respiratory pigments take up oxygen from the air and carry it to body tissues.                        | 1     |
| 18.  | Assertion (A):                   | Concentrated nitric acid is diluted by adding water slowly to acid with constant stirring.            |       |
|      | Reason (R):                      | Concentrated nitric acid is easily soluble in water.                                                  | 1     |
| 19.  | Assertion (A):                   | In reptiles, the temperature at which the fertilized eggs are kept decides the sex of the offsprings. |       |
|      | Reason (R):                      | Sex is not genetically determined in some animals.                                                    | 1     |
| 20.  | Assertion (A):                   | When ciliary muscles contract, eye lens becomes thin.                                                 |       |
|      | Reason (R):                      | Ciliary muscles control the power of the eye lens.                                                    | 1     |
| *31  | /4/1 <sup>*</sup>                |                                                                                                       |       |







#### खण्ड – ख

प्रश्न संख्या 21 से 26 तक अतिलघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंक का है।

21. ऑक्सीकरण की परिभाषा लिखिए। निम्नलिखित अभिक्रिया में ऑक्सीकृत होने वाले पदार्थ की पहचान कीजिए और उसका नाम लिखिए :

2

 $CuO + H_2 \rightarrow Cu + H_2O$ 

22. (A) इलेक्ट्रॉन स्थानान्तरण द्वारा मैग्नीशियम क्लोराइड बनना दर्शाइए। बनने वाले यौगिक में उपस्थित ऋणायन और धनायन के नाम लिखिए।

2

(परमाणु संख्या Mg = 12, Cl = 17)

#### अथवा

(B) जिंक को उसके अयस्क से किस प्रकार निष्कर्षित किया जाता है? निष्कर्षण में आवेष्ठित प्रक्रियाओं के नाम लिखिए तथा इन प्रक्रियाओं में होने वाली अभिक्रियाओं के समीकरण लिखिए।

2

23. ''पादप अपने अपिशष्ट पदार्थों से छुटकारा पाने के लिए विभिन्न युक्तियाँ प्रयुक्त करते हैं।'' किन्हीं चार युक्तियों का उल्लेख करके इस कथन की पृष्टि कीजिए।

2

24. किसी प्रवाह आरेख की सहायता से व्याख्या कीजिए कि मानव में बच्चे के लिंग (नर अथवा मादा) के लिए पिता उत्तरदायी होता है।

2

25. (A) किसी समबाहु कांच के प्रिज़्म द्वारा किसी प्रकाश किरण के अपवर्तन को दर्शाने के लिए किरण आरेख खींचिए। इस आरेख पर वह कोण अंकित कीजिए जिस पर कोई निर्गत किरण आपतित किरण की दिशा से मुड़ जाती है तथा इस कोण का नाम भी लिखिए।

2

#### अथवा

(B) जरा-दूरदृष्टिता से पीड़ित व्यक्तियों के दृष्टि-दोष के संशोधन के लिए आवश्यक लेंसों के प्रकार का नाम लिखिए। इस दोष के संशोधन के लिए उपयोग किए जाने वाले सामान्य लेंसों की संरचना लिखिए तथा इस प्रकार के लेंसों की अभिकल्पना का कारण लिखिए।

2

26. चुम्बकीय क्षेत्र रेखाएं किन्हें कहते हैं? चुम्बकीय क्षेत्र रेखाओं के दो महत्त्वपूर्ण गुणों की सूची बनाइए।

2







### SECTION - B

Question Nos. 21 to 26 are very short answer type questions. Each question carries 2 marks.

**21.** Define oxidation. Identify and name the substance oxidised in the following reaction :

 $CuO + H_2 \rightarrow Cu + H_2O$ 

**22. (A)** Show the formation of magnesium chloride by electron transfer. Write the name of the cation and anion present in the compound formed. (Atomic Number of Mg = 12, Cl = 17)

OR

**(B)** How is zinc extracted from its ore? Name the processes involved in the extraction and write chemical equations for the reactions that occur during these processes.

2

2

2

23. "Plants use a variety of techniques to get rid of waste material." Justify this statement giving any four ways.

2

**24.** Explain with the help of a flow chart that in human beings father is responsible for the sex (male or female) of the child.

2

**25. (A)** Draw a ray diagram to show the refraction of a ray of light passing through an equilateral glass prism. Mark the angle through which the emergent ray bends from the direction of the incident ray and also name it.

2

OR

**(B)** Name the type of lenses required by the persons for the correction of their defect of vision called presbyopia. Write the structure of the lenses commonly used for the correction of this defect giving reason for such designs.

2

**26.** What are magnetic field lines. List two important properties of magnetic field lines.

2







#### खण्ड 🗕 ग

## प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंक का है।

27. (A) हम किसी रासायनिक समीकरण का संतुलन क्यों करते हैं? उस नियम का नाम और नियम लिखिए जो किसी रासायनिक समीकरण के संतुलन के लिए निर्दिष्ट करता है। नीचे दिए गए रासायनिक समीकरण को संतुलित कीजिए:

3

$$Zn + H_3 PO_4 \rightarrow Zn_3 (PO_4)_2 + H_2$$

#### अथवा

(B) अवक्षेपण अभिक्रिया की परिभाषा लिखिए। इसका कोई उदाहरण दीजिए तथा उसमें होने वाली अभिक्रिया को संतुलित रासायनिक समीकरण के रूप में व्यक्त भी कीजिए।

3

28. यह दर्शाने के लिए किसी कार्यकलाप की अभिकल्पना कीजिए कि धातुएं ऊष्मा की अच्छी चालक (सुचालक) होती हैं और उनका गलनांक उच्च होता है।

3

29. मानव के आहार-नाल में भोजन का पाचन एक जटिल प्रक्रिया है। निम्नलिखित में पाए जाने वाले एन्जाइमों/लवणों का उल्लेख कीजिए तथा पाचन की प्रक्रिया में उनके कार्य का वर्णन कीजिए:

3

- (i) लार
- (ii) पित्त रस
- (iii) अग्न्याशय रस
- **30.** बहुकोशिकीय जीवों में विद्युत आवेगों की कोई दो सीमाएं लिखिए। इन जीवों में कोशिकाओं के बीच संचारण के लिए विद्युत आवेगों की तुलना में रासायनिक संचार बेहतर क्यों होता है?

3

31. यदि हम 18 cm फोकस दूरी के किसी अवतल दर्पण का उपयोग करके किसी बिम्ब का आभासी और विवर्धित प्रतिबिम्ब प्राप्त करना चाहते हैं, तो हमें बिम्ब को कहां रखना चाहिए? अपने उत्तर की पृष्टि के लिए दर्पण सूत्र का उपयोग करके +2 आवर्धन का प्रतिबिम्ब प्राप्त करने के लिए बिम्ब दूरी निर्धारित कीजिए।

3

**32.** तीन पदार्थों A, B और C की  $20^{\circ}C$  पर विद्युत प्रतिरोधकता नीचे दी गयी है :

3

| पदार्थ | प्रतिरोधकता (Ω m)     |
|--------|-----------------------|
| A      | 10 <sup>17</sup>      |
| В      | $44 \times 10^{-6}$   |
| C      | $1.62 \times 10^{-8}$ |





#### SECTION - C

Question Nos. 27 to 33 are short answer type questions. Each question carries 3 marks.

**27. (A)** Why do we balance a chemical equation? Name and state the law that suggests the balancing of a chemical equation? Balance the following chemical equation:

3

$$Zn + H_3 PO_4 \rightarrow Zn_3 (PO_4)_2 + H_2$$

OR

**(B)** Define a precipitation reaction. Give its example and also express the reaction that occurs in the form of a balanced chemical equation.

3

**28.** Design an activity to show that metals are good conductors of heat and have high melting points.

3

**29.** The digestion of food in human alimentary canal is a complex process. State the enzyme/salt present in the following and mention their function in the process of digestion:

3

- (i) Saliva
- (ii) Bile Juice
- (iii) Pancreatic Juice
- **30.** State two limitations of electrical impulses in multicellular organisms. Why is chemical communication better than electrical impulses as a means of communication between cells in multicellular organisms?

3

31. If we want to obtain a virtual and magnified image of an object by using a concave mirror of focal length 18 cm, where should the object be placed? Use mirror formula to determine the object distance for an image of magnification +2 produced by this mirror to justify your answer.

3

**32.** The electrical resistivity of three materials A, B and C at 20°C is given below:

3

| Material | Resistivity ( $\Omega$ m) |
|----------|---------------------------|
| A        | 10 <sup>17</sup>          |
| В        | $44 \times 10^{-6}$       |
| С        | $1.62 \times 10^{-8}$     |







- (i) इन पदार्थों का चालक, मिश्रात और विद्युतरोधी में वर्गीकरण कीजिए।
- (ii) इनमें प्रत्येक पदार्थ का एक-एक उदाहरण दीजिए तथा किसी विद्युत साधित्र जैसे विद्युत स्टोव अथवा विद्युत इस्तरी की अभिकल्पना में इनमें से प्रत्येक पदार्थ का एक उपयोग भी लिखिए।
- अपघटक (अपमार्जक) किन्हें कहते हैं? दो उदाहरण दीजिए। उल्लेख कीजिए कि ये किसी पारितंत्र में संतुलन किस प्रकार बनाए रखते हैं।

## प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंक का है।

**34.** (A) कोई कार्बन यौगिक 'A' आधिक्य सांद्र  $H_2SO_4$  के साथ गर्म किए जाने पर कोई अन्य यौगिक 'B' बनाता है जो निकैल उत्प्रेरक की उपस्थिति में हाइड्रोजन गैस के 1 मोल से संकलन करके कोई यौगिक 'C' बनाता है। यौगिक 'C' दहन किए जाने पर कार्बन डाइऑक्साइड के दो मोल तथा पानी के तीन मोल बनाता है। 'A', 'B' और 'C' को पहचानिए और इनकी संरचनाएँ लिखिए। होने वाली अभिक्रियाओं के समीकरण दीजिए। 'A' से 'B' के बनने में सांद्र सल्फ्यूरिक अम्ल की भूमिका का उल्लेख भी कीजिए।

#### अथवा

- (B) किसी कार्बन यौगिक 'A' का अचारों के परिरक्षक के रूप में उपयोग किया जाता है तथा इसका आण्विक सूत्र  $C_2H_4O_2$  है। यह यौगिक एथेनॉल से अभिक्रिया करके कोई मृदु गंध का यौगिक 'B' बनाता है।
  - यौगिक 'A' को पहचानिए और इसकी संरचना लिखिए।
  - (ii) यौगिक 'A' की एथेनॉल से अभिक्रिया, जिसमें 'B' बनता है, का रासायनिक समीकरण लिखिए। इस अभिक्रिया में किसी अम्ल की उपस्थिति की भूमिका का उल्लेख कीजिए।
  - (iii) हम यौगिक 'B' से यौगिक 'A' को किस प्रकार पुनः प्राप्त कर सकते हैं?
  - (iv) एथेनॉल से 'A' को किस प्रकार प्राप्त किया जा सकता है?
  - (v) यौगिक 'A' की धोने के सोडे के साथ अभिक्रिया में उत्पन्न होने वाली गैस का नाम लिखिए।
- 35. (A) (i) पुनरुद्भवन (पुनर्जनन) किसे कहते हैं? किसी ऐसे एक जीव का उदाहरण दीजिए जो इस प्रक्रिया को दर्शाता है तथा एक ऐसे जीव का भी उदाहरण दीजिए जो इसे नहीं दर्शाता है। दूसरे जीव में पुनरुद्भवन क्यों नहीं होता है?

\*31/4/1\*

3

5



- (i) Classify these materials as conductor, alloy and insulator.
- (ii) Give one example of each of these materials and state one use of each material in the design of an electrical appliance say an electric stove or an electric iron.
- **33.** What are decomposers? Give two examples. State how they maintain a balance in an ecosystem.

#### SECTION - D

Question Nos. 34 to 36 are long answer type questions. Each question carries 5 marks.

**34. (A)** A carbon compound 'A' on heating with excess conc. H<sub>2</sub>SO<sub>4</sub> forms a compound 'B', which on addition of one mole of hydrogen gas in the presence of nickel catalyst forms a compound 'C'. 'C' on combustion in air forms 2 moles of carbon dioxide and 3 moles of water. Identify 'A', 'B' and 'C' and write their structures. Give chemical equations of the reactions involved. Also state the role of concentrated sulphuric acid in the formation of 'B' from 'A'.

**OR** 

- **(B)** A carbon compound 'A' is widely used as a preservative in pickles and has a molecular formula  $C_2H_4O_2$ . This compound reacts with ethanol to form a sweet smelling compound 'B'.
  - (i) Identify the compound 'A' and write its structure.
  - (ii) Write the chemical equation for the reaction of 'A' with ethanol to form compound 'B'. State the role of presence of an acid in the reaction.
  - (iii) How can we get compound 'A' back from 'B'?
  - (iv) How can 'A' be obtained from ethanol?
  - (v) Name the gas produced when compound 'A' reacts with washing soda.
- **35. (A)** (i) What is regeneration? Give one example of an organism that shows this process and one organism that does not. Why does regeneration not occur in the latter?

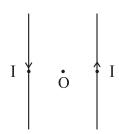
\*31/4/1\*







3


5



(ii) किसी तालाब का पानी गहरे हरे रंग का प्रतीत होता है तथा इसमें तन्तु के समान संरचनाएँ होती हैं। इन संरचनाओं के नाम और उस विधि का नाम लिखिए जिसके द्वारा ये संरचनाएँ जनन करती हैं। इस प्रक्रिया की व्याख्या कीजिए।

#### अथवा

- (B) (i) मानव नर जनन तंत्र के उस भाग का नाम लिखिए जो नीचे दिया गया कार्य करता है:
  - (a) शुक्राणुओं का वहन
  - (b) नर युग्मक का उत्पादन
  - (c) जिसका स्नाव शुक्राणुओं के वहन को सरल बनाता है
  - (d) शुक्राणुओं के उत्पादन के लिए आवश्यक ताप प्रदान करना
  - (ii) शुक्राणुओं के दो अभिलक्षण लिखिए।
  - (iii) गर्भनिरोध की शल्य क्रिया तकनीक की विधियाँ कौन-कौन सी हैं? इस विधि के अवांछित प्रभाव का उल्लेख कीजिए।
- 36. (A) (i) आरेख में दर्शाए अनुसार दो समान्तर सीधे चालकों, जिनसे विपरीत दिशाओं में समान परिमाण की धारा 'I' प्रवाहित हो रही है, की चुम्बकीय क्षेत्र रेखाओं का पैटर्न आरेखित कीजिए। इन दोनों चालकों से समान दूरी पर स्थित बिन्दु O पर चुम्बकीय क्षेत्र की दिशा दर्शाइए। (यह मानिए कि चालकों को आयताकार कार्डबोर्ड में बोर्ड के अभिलम्बवत् प्रविष्ट कराया गया है।)

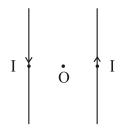


(ii) हमारे घरों में A.C. विद्युत शक्ति की आपूर्ति 220 V पर होती है। मेंस से धारा प्राप्त करने के लिए विद्युत इस्तरी अथवा विद्युत तापक जैसी युक्तियों में उपयोग किए जाने वाले केबिलों में तीन विभिन्न रंगों - लाल, काले और हरे के विद्युतरोधी आवरण वाले तीन तार होते हैं।

5



(ii) Water in a pond appears dark green and contains filamentous structures. Name these structures and the method by which they reproduce. Explain the process.


5

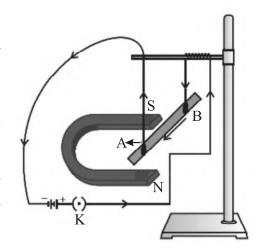
#### OR

- **(B)** (i) Name the part performing following functions in human male reproductive system:
  - (a) Carries sperm
  - (b) Production of male gametes
  - (c) Whose secretion makes the transport of sperms easier
  - (d) Provide suitable temperature for sperm formation
  - (ii) Write any two characteristics of sperms.
  - (iii) What are surgical contraceptive methods? Give the side effect caused by this procedure.

5

**36. (A)** (i) Draw the pattern of the magnetic field lines for the two parallel straight conductors carrying current of same magnitude 'I' in opposite directions as shown. Show the direction of magnetic field at a point O which is equidistant from the two conductors. (Consider that the conductors are inserted normal to the plane of a rectangular cardboard.)




(ii) In our houses we receive A.C. electric power of 220 V. In electric iron or electric heater cables having three wires with insulation of three different colours – red, black and green are used to draw current from the mains.



- (a) इन तीन विभिन्न तारों को क्या कहते हैं? रंगों के अनुसार इनके नाम लिखिए।
- (b) लाल तार और काले तार के बीच कितना विभवान्तर होता है?
- (c) हरे विद्युतरोधी आवरण वाले तार की उस प्रकरण में क्या भूमिका होती है, जब किसी विद्युत साधित्र के धातु के आवरण में अचानक विद्युत धारा का कोई क्षरण हो जाता है?

#### अथवा

- (B) (i) दी गयी प्रायोगिक व्यवस्था में यह किस प्रकार दर्शाया जा सकता है कि :
  - (a) किसी चुम्बकीय क्षेत्र में रखे जाने पर धारावाही चालक AB पर कोई बल आरोपित होता है।
  - (b) लगने वाले बल की दिशा को दो ढंगों से उत्क्रमित किया जा सकता है।



5

5

1

1

2

2

- (ii) लगने वाले बल का परिमाण उच्चतम कब होगा?
- (iii) फ्लेमिंग का वामहस्त नियम लिखिए।

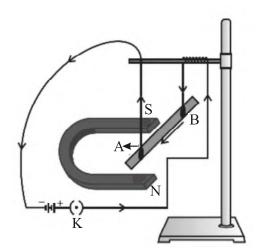
### खण्ड - इ

## प्रश्न संख्या 37 से 39 तक स्रोत-आधारित/प्रकरण-आधारित प्रश्न हैं।

- 37. हमारे दैनिक जीवन के लिए साधारण लवण एक अत्यन्त महत्त्वपूर्ण रासायनिक यौगिक है। इसका रासायनिक नाम सोडियम क्लोराइड है तथा इसका उपयोग कच्चे पदार्थ के रूप में कॉस्टिक सोडा, धोने का सोडा, बैकिंग सोडा आदि के निर्माण में किया जाता है। इसका उपयोग अचारों, मक्खन, मांस आदि के परिरक्षण में भी किया जाता है।
  - (i) उस अम्ल और क्षारक का नाम लिखिए जिनसे साधारण लवण प्राप्त किया जा सकता है।
  - (ii) सोडियम क्लोराइड की प्रकृति (अम्लीय/क्षारकीय/उदासीन) का उल्लेख कीजिए। अपने उत्तर की पृष्टि के लिए कारण दीजिए।
  - (iii) (A) क्या होता है जब सोडियम क्लोराइड के जलीय विलयन (ब्राइन) से विद्युत धारा प्रवाहित की जाती है? प्रत्येक उत्पाद का नाम लिखिए तथा यह उल्लेख भी कीजिए कि विद्युत अपघटनी सेल में वह उत्पाद कहां उत्पन्न होता है।

#### अथवा

(iii) (B) सोडियम क्लोराइड से धोने का सोडा किस प्रकार प्राप्त किया जाता है? इस प्रक्रिया में होने वाली अभिक्रियाओं के रासायनिक समीकरण दीजिए।






- What are these three different wires called? Name them (a) colourwise.
- (b) What is the potential difference between the red wire and the black wire?
- What is the role of the wire with green insulation in case (c) of accidental leakage of electric current to the metallic body of an electrical appliance?

OR

- **(B)** (i) Byusing the given experimental set-up. How can it be shown that:
  - a force is exerted on the current-carrying conductor AB when it is placed in a magnetic field.
  - (b) the direction of force can be reversed in two ways.



5

5

1

1

2

2

- (ii) When will the magnitude of the force be highest?
- (iii) State Fleming's left hand rule.

**SECTION - E** 

Question Nos. 37 to 39 are Source-based/Case-based questions.

- 37. Common salt is a very important chemical compound for our daily life. It's chemical name is sodium chloride and it is used as a raw material in the manufacture of caustic soda, washing soda, baking soda etc. It is also used in the preservation of pickles, butter, meat etc.
  - (i) Name the acid and the base from which common salt can be obtained.
  - (ii) State the nature (acidic/basic/neutral) of sodium chloride. Give reason for the justification for your answer.
  - (iii) (A) What happens when electric current is passed through an aqueous solution of sodium chloride (called brine)? Name the products obtained along with the corresponding places in the electrolytic cell where each of these products is obtained.

OR

(iii) (B) How is washing soda obtained from sodium chloride? Give chemical equation of the reactions involved in the process.

\*31/4/1\*





Get More Learning Materials Here:



- 38. जीवन में पर्यावरण में कुछ परिवर्तन, जिन्हें हम 'उद्दीपन' कहते हैं, होते हैं और हम उन पर उचित ढंग से अनुक्रिया करते हैं। अचानक किसी ज्वाला से स्पर्श हमारे लिए एक खतरनाक स्थिति होती है। एक उपाय है कि हम जलने की संभावना के बारे में संज्ञान लें और फिर अपना हाथ ज्वाला से दूर ले जाएं, परन्तु हमारे शरीर की अभिकल्पना इस प्रकार की गयी है कि हम तुरन्त ही स्वयं को इस प्रकार की परिस्थितियों से बचा लेते हैं। उस क्रिया का नाम और उसकी परिभाषा लिखिए जिसके द्वारा हम स्वयं को उपरोक्त स्थिति में बचा लेते हैं। 1 (ii) (a) प्रेरक तंत्रिका और (b) प्रतिसारण तंत्रिका की भूमिका लिखिए। 1 (iii) (A) मानव शरीर में तंत्रिका तंत्रों के दो प्रकार कौन-कौन से हैं? इन दोनों के संघटक लिखिए। 2 अथवा (iii) (B) मानव मस्तिष्क का कौन-सा भाग निम्नलिखित के लिए उत्तरदायी होता है? 2 (a) सोचना (b) पेंसिल पकड़ना (c) रक्तचाप को नियंत्रित करना (d) भूख पर नियंत्रण करना 39. किसी कक्षा में छात्रों ने कार्डबोर्ड की एक मोटी शीट लेकर उसके केन्द्र पर एक छोटा छिद्र बनाया। इस छोटे छिद्र पर सूर्य के प्रकाश को पड़ने दिया और श्वेत प्रकाश का एक महीन पुंज प्राप्त किया। फिर उन्होंने कांच का कोई प्रिज़्म लेकर उसके एक फलक पर इस श्वेत प्रकाश को पड़ने दिया। फिर उन्होंने धीरे-धीरे इस प्रिज़्म को तब तक घुमाया जब तक कि प्रिज़्म के विपरीत फलक से निकलने वाला प्रकाश पास में रखे पर्दे पर पडना आरम्भ न हो जाए। उन्होंने पर्दे पर प्रकाश की इस सुन्दर पट्टी का अध्ययन किया और यह निष्कर्ष निकाला कि यह श्वेत प्रकाश का स्पेक्ट्म है। किसी ऐसी एक अन्य घटना का उल्लेख कीजिए जहाँ इसी प्रकार के स्पेक्ट्रम का प्रेक्षण किया जाता है। 1 (ii) उपरोक्त प्रकरण में श्वेत प्रकाश का क्या होता है? 1 (iii) (A) किसी इन्द्रधनुष का प्रेक्षण करने के लिए आवश्यक दो शर्तों की सूची बनाइए। 2 अथवा (iii) (B) इन्द्रधनुष बनने को दर्शाने के लिए किरण आरेख खींचिए। इस आरेख पर नीचे दिए अनुसार (a), (b) और (c) अंकित कीजिए: 2 (a) जहाँ प्रकाश का विक्षेपण (परिक्षेपण) होता है।
- \*31/4/1\*

(b) जहाँ प्रकाश का आन्तरिक परावर्तन होता है।

जहाँ प्रकाश का अंतिम अपवर्तन होता है।



- 38. In life there are certain changes in the environment called 'stimuli' to which we respond appropriately. Touching a flame suddenly is a dangerous situation for us. One way is to think consciously about the possibility of burning and then moving the hand. But our body has been designed in such a way that we save ourself from such situations immediately. (i) Name the action by which we protect ourself in the situation mentioned above and define it. (ii) Write the role of (a) motor and (b) relay neuron.
  - (iii) (A) What are the two types of nervous system in human body? Name the components of each of them.

- (iii) (B) Which part of the human brain is responsible for :
  - (a) thinking
  - (b) picking up a pencil
  - (c) controlling blood pressure
  - (d) controlling hunger
- **39.** The students in a class took a thick sheet of cardboard and made a small hole in its centre. Sunlight was allowed to fall on this small hole and they obtained a narrow beam of white light. A glass prism was taken and this white light was allowed to fall on one of its faces. The prism was turned slowly until the light that comes out of the opposite face of the prism appeared on the nearby screen. They studied this beautiful band of light and concluded that it is a spectrum of white light.
  - (i) Give any one more instance in which this type of spectrum is observed.
  - (ii) What happens to white light in the above case?
  - (iii) (A) List two conditions necessary to observe a rainbow.

#### OR

- (iii) (B) Draw a ray diagram to show the formation of a rainbow. Mark on it, points (a), (b) and (c) as given below:
  - (a) Where dispersion of light occurs.
  - (b) Where light gets reflected internally.
  - Where final refraction occurs. (c)

\*31/4/1\*

Get More Learning Materials Here:







1 1

2

2

1

1

2





# Marking Scheme Strictly Confidential

# (For Internal and Restricted use only) Secondary School Certificate Examination, 2025

**SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/1)** 

#### **General Instructions: -**

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4 The Marking Scheme carries only suggested value points for the answers.

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark( $\sqrt{\ }$ ) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right ( $\checkmark$ ) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.



| 9  | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 | A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13 | <ul> <li>Ensure that you do not make the following common types of errors committed by the Examiner in the past:-</li> <li>Leaving answer or part thereof unassessed in an answer book.</li> <li>Giving more marks for an answer than assigned to it.</li> <li>Wrong totaling of marks awarded on an answer.</li> <li>Wrong transfer of marks from the inside pages of the answer book to the title page.</li> <li>Wrong question wise totaling on the title page.</li> <li>Wrong totaling of marks of the two columns on the title page.</li> <li>Wrong grand total.</li> <li>Marks in words and figures not tallying/not same.</li> <li>Wrong transfer of marks from the answer book to online award list.</li> <li>Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)</li> <li>Half or a part of answer marked correct and the rest as wrong, but no marks awarded.</li> <li>While evaluating the answer books if the answer is found to be totally incorrect, it should</li> </ul> |
| 15 | be marked as cross (X) and awarded zero (0)Marks.  Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086)
[ Paper Code: 31/4/1]

**Maximum Marks: 80** 

|           | Maximui                                                                                              | m Marks: 80 |                |  |  |
|-----------|------------------------------------------------------------------------------------------------------|-------------|----------------|--|--|
| Q.<br>No. | EXPECTED ANSWERS / VALUE POINTS                                                                      | Marks       | Total<br>Marks |  |  |
|           | SECTION A                                                                                            |             |                |  |  |
| 1         | (d)/Melting of glaciers                                                                              | 1           | 1              |  |  |
| 2         | (a)/Calcium chloride                                                                                 | 1           | 1              |  |  |
| 3         | (b)/ductility                                                                                        | 1           | 1              |  |  |
| 4         | (d)/Propyne                                                                                          | 1           | 1              |  |  |
| 5         | (b)/Nitrogen                                                                                         | 1           | 1              |  |  |
| 6         | (b)/B and D                                                                                          | 1           | 1              |  |  |
| 7         | (c)/seeds                                                                                            | 1           | 1              |  |  |
| 8         | (a)/anther                                                                                           | 1           | 1              |  |  |
| 9         | (c)/100%; 75%                                                                                        | 1           | 1              |  |  |
| 10        | (c)/40cm                                                                                             | 1           | 1              |  |  |
| 11        | (c)/glass slab                                                                                       | 1           | 1              |  |  |
| 12        | (d)/9                                                                                                | 1           | 1              |  |  |
| 13        | $(a)/4400 \Omega$                                                                                    | 1           | 1              |  |  |
| 14        | (c)/60                                                                                               | 1           | 1              |  |  |
| 15        | (c)/plants -> man                                                                                    | 1           | 1              |  |  |
| 16        | (c)/DDT                                                                                              | 1           | 1              |  |  |
| 17        | (d) / Assertion (A) is false but Reason (R) is true.                                                 | 1           | 1              |  |  |
| 18        | (d) / Assertion (A) is false but Reason (R) is true.                                                 | 1           | 1              |  |  |
| 19        | (a) / Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A). | 1           | 1              |  |  |
| 20        | (d) / Assertion (A) is false but Reason (R) is true.                                                 | 1           | 1              |  |  |
|           |                                                                                                      |             |                |  |  |
|           |                                                                                                      |             |                |  |  |

|    | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   |            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| 21 | Oxidation is the gain of oxygen by a substance or the loss of hydrogen from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |            |
|    | a substance/ loss of electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |            |
|    | Hydrogen / H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   | 2          |
| 22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2          |
|    | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |            |
|    | $Mg : + \underset{\overset{\times}{\text{Cl}} \times}{\overset{\times}{\text{Cl}}} \times \\ + \underset{\overset{\times}{\text{Cl}} \times}{\overset{\times}{\text{Cl}}} \times \\ \times \underset{\overset{\times}{\text{Cl}} \times} \times \\ \times \underset{\overset{\times}{\text{Cl}} \times}{\overset{\times}{\text{Cl}}} \times \\ \times \underset{\overset{\times}{\text{Cl}} \times} \times \\ \times \underset{\overset{\times}{\text{Cl}} \times}$ | 1   |            |
|    | Cation - magnesium ion / (Mg <sup>2+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 |            |
|    | Anion - chloride ion / (Cl <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2 |            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /2  |            |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            |
|    | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |            |
|    | (i) If Zinc is in the form of sulphide ore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |            |
|    | Roasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |            |
|    | $2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |            |
|    | - Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |            |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 |            |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            |
|    | (ii) If Zinc is in the form of carbonate ore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            |
|    | Calcination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |            |
|    | $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 |            |
|    | - Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |            |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2          |
| 23 | (either i or ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |
|    | Four ways:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |            |
|    | 1. O <sub>2</sub> as a waste product through stomata.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |            |
|    | <ul><li>2. Excess water by transpiration.</li><li>3. Shedding of leaves.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            |
|    | 4. Stored as resins and gums in old xylem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |            |
|    | 5. Into the soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            |
|    | 6. Stored in cellular vacuoles (Any four)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ½x4 | 2          |
|    | (Any lour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | \ \( \( \) |

| 24                                                                                                                                                                                                                                                                                                                               |     |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Mother's Ova  Father's Sperm  Gametes  X  X  X  X  X  X  Y  Offsprings  Female child  If a sperm carrying X chromosomes fertilizes an ovum which carries X chromosome, then the child born will be a girl.  If a sperm carrying Y chromosome fertilizes an ovum which carries X-  Chromosome, then the child born will be a boy. | 2   | 2 |
| 25 (A)  Incident ray  (one mark for diagram and ½ for labelling.)  • Angle of deviation  OR  (B)                                                                                                                                                                                                                                 | 1½  |   |
| I.  Bi-focal lens.  Bi-focal lens having upper portion consists of a concave lens and lower portion consists convex lens.  distance Concave lens  rear Convex lens  to facilitate the distant and near vision respectively.                                                                                                      | 1/2 |   |

|    | OR                                                                                        |         |   |
|----|-------------------------------------------------------------------------------------------|---------|---|
|    | II.                                                                                       |         |   |
|    | convex lens.                                                                              | 1/2     |   |
|    | Convex lens is thickened at the middle as compared to edges /                             |         |   |
|    |                                                                                           | 1       |   |
|    | to facilitate the near vision.                                                            | 1/2     |   |
|    | (either of I or II)                                                                       | 72      | 2 |
| 26 | The lines representing magnetic field around a magnet.                                    | 1       |   |
|    | S N                                                                                       |         |   |
|    | Properties:                                                                               |         |   |
|    | No two field lines cross each other.                                                      |         |   |
|    | Field lines emerge from north pole and merge at south pole.                               |         |   |
|    | Field lines are closed curves.                                                            |         |   |
|    | The direction of the field lines inside the magnet is from its south pole to              |         |   |
|    | north pole.                                                                               | 1/2+1/2 | 2 |
|    | (any two properties)                                                                      |         | 2 |
| 27 | SECTION C                                                                                 |         | 1 |
| 21 | (A)                                                                                       |         |   |
|    | • The number of atoms of each element remains same before and                             |         |   |
|    | after a chemical reaction / to satisfy the law of conservation of                         | 1/2     |   |
|    | mass.                                                                                     |         |   |
|    | Law of conservation of mass.                                                              | 1/2     |   |
|    | <ul> <li>Mass can neither be created nor destroyed in a chemical<br/>reaction.</li> </ul> | 1       |   |
|    | $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                             | 1       |   |
|    | OR                                                                                        |         |   |
|    |                                                                                           |         |   |
|    |                                                                                           |         |   |

| (B)                                                                                                     |             |   |
|---------------------------------------------------------------------------------------------------------|-------------|---|
| Any reaction in which a precipitate (insoluble substance) is formed is called a precipitation reaction. |             |   |
| Example: when sodium sulphate solution is added to the barium chloride                                  |             |   |
| solution a white precipitate of barium sulphate is formed.                                              | 1           |   |
| $Na_2SO_4 (aq) + BaCl_2(aq) \longrightarrow BaSO_4 (s) + 2NaCl(aq)$ $ppt$                               | 1           |   |
| (any other example)                                                                                     |             | 3 |
| Activity:                                                                                               |             |   |
| Take an aluminum or copper wire and clamp it on a stand as shown in the                                 |             |   |
| diagram.                                                                                                |             |   |
| Fix a pin to the free end of the wire using wax.                                                        |             |   |
| Heat the wire with spirit lamp or burner near the place where it is clamped.                            |             |   |
| We will observe that the pin falls when the wax melts but wire does not                                 | 3           |   |
| melt.                                                                                                   |             |   |
| It indicates that metals are good conductors of heat and have high melting                              |             |   |
| points.                                                                                                 |             |   |
|                                                                                                         |             |   |
| Stand — Metal wire                                                                                      |             |   |
| Clamp Free end of wire                                                                                  |             |   |
| Burner                                                                                                  |             |   |
| (diagram is not mandatory)                                                                              |             |   |
| (any other activity)                                                                                    |             |   |
| (any other activity)                                                                                    |             | 3 |
| 29 (i) Salivary amylase - converts Starch to sugar                                                      | 1/2 +1/2    |   |
| (ii) Bile salts – changing the acidic food alkaline/ emulsifies fats.                                   | 1/2 +1/2    |   |
| (iii) Trypsin – Helps in digestion of proteins /<br>Lipase – Breaking down emulsified fats              | 1/2 +1/2    | 3 |
| 30 Limitations of electrical impulse:                                                                   | , , , , , , |   |
| • They reach only those cells that are connected by nervous tissue, and                                 |             |   |
| not every cell in the animal body.                                                                      | 1           |   |
| • Once an electrical impulse is generated in a cell and transmitted, the                                |             |   |
| cell will take some time to reset its mechanism before it can generate                                  |             |   |
| and transmit a new impulse. / Takes sometime to reset its                                               |             |   |
| mechanism.                                                                                              | 1           |   |
| moonamen.                                                                                               | 1           |   |

|    | <ul> <li>In chemical communication the signals (chemical compound) potentially reach all cells of the body steadily and persistently providing the desired changes.</li> </ul> | 1       | 3 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| 31 | Object should be placed between F and P/At less than 18cm distance from the mirror.  Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                                | 1       |   |
|    | Magnification $m = +2$                                                                                                                                                         | 1/2     |   |
|    | $f = -18 \text{ cm}$ $m = -\frac{v}{u} = +2$ $\therefore v = -2u$                                                                                                              | 1       |   |
|    | $\frac{1}{2u} + \frac{1}{u} = \frac{1}{18 cm}$ $\therefore \frac{1}{2u} = \frac{1}{-18 cm}$                                                                                    |         |   |
|    | u = -9  cm                                                                                                                                                                     | 1/2     | 3 |
| 32 | (i)                                                                                                                                                                            |         |   |
|    | A - Insulator                                                                                                                                                                  | 1/2     |   |
|    | B - Alloy                                                                                                                                                                      | 1/2     |   |
|    | C - Conductor                                                                                                                                                                  | 1/2     |   |
|    | (ii)                                                                                                                                                                           |         |   |
|    | A: Plastic - handle of an electric iron.                                                                                                                                       |         |   |
|    | B: Nichrome – used as a heating element in an electric iron.                                                                                                                   |         |   |
|    | C: Copper - electric wires. /                                                                                                                                                  |         |   |
|    | A: Rubber– foot of the electric stove.                                                                                                                                         |         |   |
|    | B: Nichrome – used as a heating element in an electric stove.                                                                                                                  |         |   |
|    | C: Copper- electric wires.                                                                                                                                                     |         |   |
|    | (any other example with its use in an electric appliance)                                                                                                                      | (½X3)   | 3 |
| 33 | Decomposers are the microorganisms which breakdown the complex                                                                                                                 | 1       |   |
|    | organic substances into simple inorganic substances.                                                                                                                           | 1       |   |
|    | Examples: bacteria and fungi                                                                                                                                                   | 1/2+1/2 |   |
|    |                                                                                                                                                                                |         |   |
|    | The simple substances formed by decomposition go into the soil and are                                                                                                         | 1       |   |



|    | SECTION D                                                                                                                                                                                              |          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 34 | (A)  Compound A: Ethanol/ Ethyl alcohol;  H H H                                                                                                                                                        | 1/2; 1/2 |
|    | Compound B: Ethene; $H - C = C - H / C_2H_4$ $H - H$                                                                                                                                                   | 1/2; 1/2 |
|    | Compound C: Ethane ; $H - C - C - H / C_2H_6$ $H H$ $H H$                                                                                                                                              | 1/2; 1/2 |
|    | CH <sub>3</sub> CH <sub>2</sub> OH $\xrightarrow{Hot\ Conc}_{H_2}S_{O_4}$ CH <sub>2</sub> = CH <sub>2</sub> + H <sub>2</sub> O  'A'  'B'  Conc. H <sub>2</sub> SO <sub>4</sub> is a dehydrating agent. | 1/2      |
|    | $ \begin{array}{ccc} H & H \\   &   \\ H - C = C - H + H_2 & \xrightarrow{\text{Ni}} CH_3 - CH_3 \\ \text{'B'} & \text{'C'} \end{array} $                                                              | 1/2      |
|    | $C_2H_6 + 7/2 O_2 \longrightarrow 2CO_2 + 3H_2O$ 'C'  (ignore balancing)                                                                                                                               | 1/2      |
|    | OR<br>(B)                                                                                                                                                                                              |          |
|    | (i) A – Ethanoic acid ; $H - C - C = O / CH_3COOH$<br>H (ii)                                                                                                                                           | 1/2 +1/2 |
|    | $CH_3COOH + C_2H_5OH \xrightarrow{acid} CH_3COOC_2H_5$                                                                                                                                                 | 1/2      |

| 'B'                                                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l – As a catalyst                                                                                                                                                                                   | 1/2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cid or base/ on addition of NaOH, sodium salt of acid is ced which is further hydrolysed to form 'A'. ing solution of alkaline potassium permanganate or acidified ium dichromate in warm ethanol./ | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lioxide/CO <sub>2</sub>                                                                                                                                                                             | 1                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | 1/2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | 1/2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                   | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spirogyra.                                                                                                                                                                                          | 1/2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | 1/2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pieces grow into new individuals.                                                                                                                                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OR                                                                                                                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| rens                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| gland/ seminal vesicles                                                                                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | ½x4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ts of genetic material, has a tail for movement, small in size.                                                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                     | rens gland/ seminal vesicles | ing dil. NaOH to B (ester) /saponification / by adding water cid or base/ on addition of NaOH, sodium salt of acid is seed which is further hydrolysed to form 'A'.  ing solution of alkaline potassium permanganate or acidified ium dichromate in warm ethanol./  - CH2OH Alkaline KMnO4 + Heat Or acidified K2Cr2O7 + Heat CH3COOH  dioxide/CO2  1  on: The ability to give rise to new individual organism from roody parts / If the individual is somehow cut or broken up into pieces, then each piece grows into a new organism.  Organism show regeneration: Planaria /Hydra  Organism does not show regeneration: Spirogyra  (any other example)  Because it does not have specialised cells which proliferate to make new cell types and tissues.  It reproduces through Fragmentation.  It simply breaks up into smaller pieces upon maturation. The pieces grow into new individuals.  OR  OR |

|   | (iii)                                                                                                                                                                                                             |     |   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|   | <ul> <li>Vas deferens in the males and fallopian tube in females is blocked to<br/>prevent fertilization.</li> </ul>                                                                                              | ½x2 |   |
|   | <ul> <li>Can cause infections if not performed properly.</li> </ul>                                                                                                                                               | 1   | 5 |
| 6 | (A)                                                                                                                                                                                                               |     |   |
|   | (i)                                                                                                                                                                                                               |     |   |
|   | Correct Pattern                                                                                                                                                                                                   | 1   |   |
|   | Correct direction                                                                                                                                                                                                 | 1   |   |
|   |                                                                                                                                                                                                                   |     |   |
|   | (ii) (a)                                                                                                                                                                                                          |     |   |
|   | red wire : Live wire                                                                                                                                                                                              |     |   |
|   | black wire : Neutral wire<br>green wire : Earth wire                                                                                                                                                              | ½x3 |   |
|   | (b) 220 V                                                                                                                                                                                                         | 1/2 |   |
|   | (c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock. | 1   |   |
|   | OR                                                                                                                                                                                                                |     |   |
|   | (B)                                                                                                                                                                                                               |     |   |
|   | (i) (a) The conductor AB gets displaced.                                                                                                                                                                          | 1   |   |
|   | (b)                                                                                                                                                                                                               |     |   |
|   | - By reversing the direction of the current.                                                                                                                                                                      |     |   |
|   | - By reversing the direction of the magnetic field.                                                                                                                                                               | 1+1 |   |
|   |                                                                                                                                                                                                                   |     |   |

| (iii)Stretch the thumb, fore finger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of the current, then the thumb will point in the direction of the force acting on the conductor.  SECTION E | 1                      | 5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|
| SECTION E                                                                                                                                                                                                                                                                                                                           |                        |   |
| (i) Hydrochloric acid / HCl and Sodium hydroxide / NaOH (ii) -Neutral                                                                                                                                                                                                                                                               | 1/2 +1/2<br>1/2<br>1/2 |   |
| <ul> <li>- as it is a salt of strong acid and strong base</li> <li>(iii) (A)</li> <li>• Aqueous solution of sodium chloride(brine) decomposes (electrolysed) and produces:</li> </ul>                                                                                                                                               | )   1/2                |   |
| <ul> <li>NaOH solution near cathode</li> <li>Cl<sub>2</sub> at anode</li> <li>H<sub>2</sub> at cathode</li> </ul>                                                                                                                                                                                                                   | ½ x3                   |   |
| OR                                                                                                                                                                                                                                                                                                                                  |                        |   |
| (iii)(B)  Washing soda is obtained from sodium chloride by following reactions:  NaCl + H <sub>2</sub> O + CO <sub>2</sub> + NH <sub>3</sub> → NH <sub>4</sub> Cl + NaHCO <sub>3</sub> 2NaHCO <sub>3</sub>                                                                                                                          | ½ x 4                  | 4 |
| (i) Reflex action.  The sudden action in response to stimuli in the environment.  (ii)                                                                                                                                                                                                                                              | 1/2 1/2 1/2            | 4 |
| <ul> <li>(a) Motor neuron – carries message from spinal cord to the effector organ/muscle</li> <li>(b)Relay neuron – Connects sensory neuron to motor neuron.</li> <li>(iii)</li> </ul>                                                                                                                                             | 1/2                    |   |
| Central Nervous system.  Components: Brain; spinal cord  Peripheral Nervous system.                                                                                                                                                                                                                                                 |                        |   |
| Components: cranial nerves; spinal nerves.  OR                                                                                                                                                                                                                                                                                      | ½ x4                   |   |

|    |                                                     |      | 1 |
|----|-----------------------------------------------------|------|---|
|    | (iii)(B)                                            |      |   |
|    | (a) Fore-brain/Cerebrum                             |      |   |
|    | (b) Cerebellum / Hind-brain                         |      |   |
|    | (c) Medulla/ Hind-brain                             |      |   |
|    | (d) Fore-brain                                      | ½ x4 |   |
|    |                                                     |      | 4 |
| 39 | (i) A rainbow (or any other)                        | 1    |   |
|    | (ii) Dispersion of white light takes place.         | 1    |   |
|    | (iii) (A)                                           |      |   |
|    | • The presence of water droplets in the atmosphere. | 1+1  |   |
|    | •The sun must be at the back of the observer.       |      |   |
|    |                                                     |      |   |
|    | OR                                                  |      |   |
|    | (;;;) ( <b>D</b> )                                  |      |   |
|    | (iii) (B)                                           |      |   |
|    | Raindrop                                            |      |   |
|    | Sunlight a a ⇔ b                                    | ½ x4 |   |
|    |                                                     |      |   |
|    | (½ mark for diagram and ½ for labelling a, b, c)    |      | 4 |



## Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Secondary School Certificate Examination, 2025
SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/2)

#### **General Instructions: -**

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking Scheme carries only suggested value points for the answers.

  These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- **6** Evaluators will mark( √ ) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.



12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. 14 While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. 15 Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. 16 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation. 17 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. 18 The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.



# SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086)
[ Paper Code:31/4/2]

**Maximum Marks: 80** 

| Q.<br>No. | EXPECTED ANSWERS / VALUE POINTS                                                                       | Marks | Total<br>Marks |
|-----------|-------------------------------------------------------------------------------------------------------|-------|----------------|
|           | SECTION A                                                                                             |       |                |
| 1         | (c)/ 40cm                                                                                             | 1     | 1              |
| 2         | (c) /100%; 75%                                                                                        | 1     | 1              |
| 3         | (c)/ seeds                                                                                            | 1     | 1              |
| 4         | (d)/ Melting of glaciers                                                                              | 1     | 1              |
| 5         | (b)/ ductility                                                                                        | 1     | 1              |
| 6         | (a)/ Calcium chloride                                                                                 | 1     | 1              |
| 7         | (d)/ Propyne                                                                                          | 1     | 1              |
| 8         | (d)/ Both, male and female germ cells.                                                                | 1     | 1              |
| 9         | (b)/ Nitrogen                                                                                         | 1     | 1              |
| 10        | (b)/ B and D                                                                                          | 1     | 1              |
| 11        | (c)/ DDT                                                                                              | 1     | 1              |
| 12        | (c)/ plants -→ man                                                                                    | 1     | 1              |
| 13        | (c)/ glass slab                                                                                       | 1     | 1              |
| 14        | (d)/9                                                                                                 | 1     | 1              |
| 15        | (c)/ 60                                                                                               | 1     | 1              |
| 16        | (a)/ $4400~\Omega$                                                                                    | 1     | 1              |
| 17        | (d) / Assertion (A) is false but Reason (R) is true.                                                  | 1     | 1              |
| 18        | (d) / Assertion (A) is false but Reason (R) is true.                                                  | 1     | 1              |
| 19        | (d) / Assertion (A) is false but Reason (R) is true.                                                  | 1     | 1              |
| 20        | (a) // Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A). | 1     | 1              |

|   | SECTION B                                                                                                                                        |      |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 1 | Safety measures:                                                                                                                                 |      |   |
|   | <ul> <li>A pair of tongs should be used to hold the magnesium ribbon.</li> <li>Burn the magnesium ribbon keeping it away from eyes. /</li> </ul> | ½ x2 |   |
|   | protective eye glasses should be worn.                                                                                                           |      |   |
|   | Observations:                                                                                                                                    |      |   |
|   | Dazzling white flame is seen.                                                                                                                    | ½ x2 |   |
|   | A white powder or ash is formed.                                                                                                                 |      | 2 |
| 2 | (A)                                                                                                                                              |      |   |
|   | Incident ray  (one mark for diagram and ½ for labelling.)                                                                                        | 11/2 |   |
|   | Angle of deviation                                                                                                                               | 1/2  |   |
|   | OR                                                                                                                                               |      |   |
|   | (B)                                                                                                                                              |      |   |
|   | I.                                                                                                                                               | 1/2  |   |
|   | Bi-focal lens.                                                                                                                                   | /2   |   |
|   | Bi-focal lens having upper portion consists of a concave lens and lower portion consists convex lens.  /                                         | 1    |   |
|   | distance Concave lens                                                                                                                            |      |   |
|   | to facilitate the distant and near vision respectively.                                                                                          | 1/2  |   |
|   | II.                                                                                                                                              |      |   |
|   | • convex lens.                                                                                                                                   | 1/2  |   |

|    | Convex lens is thickened at the middle as compared to edges                                                                                                                                                                                                                                                                                                                                                                            | 1         |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|    | • to facilitate the near vision.  (either of I or II)                                                                                                                                                                                                                                                                                                                                                                                  | 1/2       | 2 |
| 23 | The inner lining of the small intestine has numerous finger-like projections called villi, which increases the surface area for absorption of digested food; The villi are richly supplied with blood vessels; which transport the absorbed food to each and every cell of the body.                                                                                                                                                   | 2         |   |
|    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 2 |
| 24 | <ul> <li>(i)</li> <li>All tall</li> <li>Tallness is a dominant trait</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | 1/2       |   |
|    | (ii) 1 : 1                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |   |
|    | (award marks if explained through a Mendel's cross)                                                                                                                                                                                                                                                                                                                                                                                    |           | 2 |
| 25 | (A) $Mg \stackrel{\times}{\bullet} \stackrel{\times}{+} \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\longrightarrow} (Mg^{2^{+}}) \left[ \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times} \right]_{2}$ • Cation - magnesium ion / (Mg <sup>2+</sup> ) • Anion - chloride ion / (Cl <sup>-</sup> ) | 1 1/2 1/2 |   |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |   |
|    | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |   |
|    | <ul><li>(i) If Zinc is in the form of sulphide ore.</li><li>Roasting</li></ul>                                                                                                                                                                                                                                                                                                                                                         | 1/2       |   |
|    | $2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$                                                                                                                                                                                                                                                                                                                                                                                   | 1/2       |   |
|    | - Reduction $ZnO + C \xrightarrow{\text{Heat}} Zn + CO$                                                                                                                                                                                                                                                                                                                                                                                | 1/2       |   |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |   |
|    | (ii) If Zinc is in the form of carbonate ore.                                                                                                                                                                                                                                                                                                                                                                                          |           |   |



|    | • Calcination                                                                             | 1/2     |   |
|----|-------------------------------------------------------------------------------------------|---------|---|
|    | $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$                                             | 1/2     |   |
|    | - Reduction                                                                               | 1/2     |   |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                      | 1/2     | 2 |
|    | (either i or ii)                                                                          | /2      | 2 |
| 26 | An electric fuse is a safety device used to prevent any damage to an                      | 1       |   |
| 20 | electrical appliance due to short-circuiting and overloading of the                       | 1       |   |
|    | electrical circuit.                                                                       |         |   |
|    | If a fuse wire with defined rating is replaced by one with a larger                       |         |   |
|    | rating, then the fuse wire will not melt and the electrical appliance                     |         |   |
|    | will be damaged due to flow of unduly high current during short-                          | 1       | 2 |
|    | circuiting and overloading.                                                               |         |   |
|    | SECTION C                                                                                 |         |   |
| 27 | Decomposers are the microorganisms which breakdown the complex                            | 1       |   |
|    | organic substances into simple inorganic substances.                                      | 1       |   |
|    | Examples: bacteria and fungi                                                              | 1/2+1/2 |   |
|    | The simple substances formed by decomposition go into the soil and are                    |         |   |
|    | used up once more by the plants, thus maintain balance of an ecosystem.                   | 1       | 3 |
| 28 | (i) Metal D                                                                               |         |   |
| 20 | (ii) Blue colour of copper sulphate will disappear.                                       |         |   |
|    | (iii) $B > C > A > D$                                                                     | 1x3     | 3 |
| 29 | (i)                                                                                       |         |   |
| 29 | A: pulmonary artery                                                                       |         |   |
|    | B: pulmonary vein                                                                         | ½ x4    |   |
|    | C: aorta                                                                                  |         |   |
|    | D: vena cava                                                                              |         |   |
|    | (ii)                                                                                      |         |   |
|    | • Function of A: Carries deoxygenated blood from heart to lungs.                          | 1/ 2    |   |
|    | <ul> <li>Function of C: Transports oxygenated blood from heart to all parts of</li> </ul> | ½ x2    |   |
|    | the body.                                                                                 |         | 3 |
|    |                                                                                           |         | 3 |
| 30 | (i) • A - Insulator                                                                       | 1/4     |   |
|    |                                                                                           | 1/2     |   |
|    | <ul><li>B - Alloy</li><li>C - Conductor</li></ul>                                         | 1/2     |   |
|    | (ii)                                                                                      | 72      |   |
|    | (II <i>)</i>                                                                              | L       | j |

| <ul> <li>A: Plastic - handle of an electric iron.</li> <li>B: Nichrome used as a heating element in an electric iron.</li> <li>C: Copper - electric wires.  /  A: Rubber- foot of the electric stove.  B: Nichrome used as a heating element in an electric stove.  C: Copper - electric wires.  (any other example with its use in an electric appliance)  (½x3)  3  1  Object should be placed between C and F / between18em to 36 cm from the mirror.  Mirror formula = 1/n + 1/n = 1/f  Magnification m = -2  f 18 cm  m 1/n = -2  ∴ v = 2u  1  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  3  3  (A)  The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  Law of conservation of mass.  Law of conservation of mass.  Mass can neither be created nor destroyed in a chemical reaction.  32  OR  OR  1  A: Rubber- foot of the electric iron.  (½x3)  3  3  4  4  5  6  6  7  7  7  7  7  7  7  7  7  7  7</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | A. Disatis described for a language from                        |                   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------|-------------------|---|
| • C: Copper - electric wires.  A: Rubber — foot of the electric stove.  B: Nichrome — used as a heating element in an electric stove.  C: Copper - electric wires.  (any other example with its use in an electric appliance)  • Object should be placed between C and F $\int$ between 18cm to 36 cm from the mirror.  • Mirror formula $= \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ • Magnification $m = -2$ $f = -18$ cm $m = -\frac{v}{u} = -2$ $\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ • The number of atoms of each element remains same before and after a chemical reaction $f$ to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 |                   |   |
| A: Rubber– foot of the electric stove.  B: Nichrome – used as a heating element in an electric stove.  C: Copper– electric wires.  (any other example with its use in an electric appliance)  • Object should be placed between C and F / between18em to 36 cm from the mirror.  • Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ • Magnification m = -2  f = -18 cm $m = -\frac{v}{u} = -2$ $\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ 42  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                                 |                   |   |
| B: Nichrome – used as a heating element in an electric stove.  C: Copper- electric wires.  (any other example with its use in an electric appliance)  Object should be placed between C and F / between 18cm to 36 cm from the mirror.  • Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ • Magnification m = -2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ 32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | • C: Copper - electric wires.                                   |                   |   |
| B: Nichrome – used as a heating element in an electric stove.  C: Copper- electric wires.  (any other example with its use in an electric appliance)  Object should be placed between C and F / between 18cm to 36 cm from the mirror.  • Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ • Magnification m = -2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ 32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                                 |                   |   |
| C: Copper- electric wires.  (any other example with its use in an electric appliance)  ( $\frac{1}{2}x33$ )  • Object should be placed between C and F / between 18cm to 36 cm from the mirror.  • Mirror formula $=\frac{1}{\nu}+\frac{1}{u}=\frac{1}{f}$ • Magnification m = -2 $f=-18$ cm $m=-\frac{\nu}{u}=-2$ $\therefore \nu=2u$ • $\frac{1}{2u}+\frac{1}{u}=\frac{1}{-18}$ cm $u=-27$ cm  32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn+2H_3PO_4 \longrightarrow Zn_3(PO_4)_2+3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | A: Rubber– foot of the electric stove.                          |                   |   |
| C: Copper- electric wires.  (any other example with its use in an electric appliance)  ( $\frac{1}{2}x33$ )  • Object should be placed between C and F / between 18cm to 36 cm from the mirror.  • Mirror formula $=\frac{1}{\nu}+\frac{1}{u}=\frac{1}{f}$ • Magnification m = -2 $f=-18$ cm $m=-\frac{\nu}{u}=-2$ $\therefore \nu=2u$ • $\frac{1}{2u}+\frac{1}{u}=\frac{1}{-18}$ cm $u=-27$ cm  32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn+2H_3PO_4 \longrightarrow Zn_3(PO_4)_2+3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | B: Nichrome – used as a heating element in an electric stove.   |                   |   |
| (any other example with its use in an electric appliance)  ( $\frac{1}{2}x3$ )  3  • Object should be placed between C and F / between 18cm to 36 cm from the mirror.  • Mirror formula $=\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ • Magnification m = -2 $f=-18 \text{ cm}$ $m=-\frac{v}{u}=-2$ $\therefore v=2u$ • $\frac{1}{2u}+\frac{1}{u}=\frac{1}{-18 \text{ cm}}$ $u=-27 \text{ cm}$ 4/2  3  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn+2H_3PO_4 \longrightarrow Zn_3(PO_4)_2+3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                 |                   |   |
| 31  • Object should be placed between C and F / between18cm to 36 cm from the mirror.  • Mirror formula = $\frac{1}{\nu} + \frac{1}{u} = \frac{1}{f}$ • Magnification m = -2  f = -18 cm $m = -\frac{\nu}{u} = -2$ ∴ $\nu = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ ∴ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ 4/2  32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                                 | $(\frac{1}{2}x3)$ |   |
| from the mirror.  • Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ • Magnification m = -2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ 132  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | ()                                                              | (* ==== )         | 3 |
| • Mirror formula $=$ $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$<br>• Magnification m = -2<br>f = -18  cm<br>$m = -\frac{v}{u} = -2$<br>$\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$<br>$\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$<br>u = -27  cm  42  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.<br>• Law of conservation of mass.<br>• Law of conservation of mass.<br>• Mass can neither be created nor destroyed in a chemical reaction.<br>• $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 | Object should be placed between C and F / between 18cm to 36 cm | 1                 |   |
| • Magnification m = -2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass. • Law of conservation of mass. • Law of conservation of mass. • Mass can neither be created nor destroyed in a chemical reaction. • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | from the mirror.                                                |                   |   |
| • Magnification m = -2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass. • Law of conservation of mass. • Law of conservation of mass. • Mass can neither be created nor destroyed in a chemical reaction. • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | $\frac{1}{1}$                                                   |                   |   |
| $f = -18 \text{ cm}$ $m = -\frac{v}{u} = -2$ $\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ •  The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Law of conservation of destroyed in a chemical reaction.  • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | • Mirror formula = $v \cdot u = f$                              | 1/2               |   |
| $m = -\frac{v}{u} = -2$ $\therefore v = 2u$ • $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass. • Law of conservation of mass. • Law of conservation of mass. • Mass can neither be created nor destroyed in a chemical reaction. • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | • Magnification m = -2                                          |                   |   |
| $ \frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}} $ $ \frac{3}{2u} = \frac{1}{-18 \text{ cm}} $ $ u = -27 \text{ cm} $ • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass. • Law of conservation of mass. • Mass can neither be created nor destroyed in a chemical reaction. • $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                                                 |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | $m = -\frac{v}{u} = -2$                                         | 1                 |   |
| $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $u = -27 \text{ cm}$ $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{3}{2u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} = \frac{1}{2u} = \frac{1}{2u}$ $\frac{1}{2u} = \frac{1}{2u} = \frac{1}{2u}$ $\frac{1}{2u} = \frac{1}{2u}$ |    |                                                                 |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | 24                                                              |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | •                                                               |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | $\frac{1}{1} + \frac{1}{1} - \frac{1}{1}$                       |                   |   |
| u = −27 cm  1/2  32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • 3Zn + 2H <sub>3</sub> PO <sub>4</sub> → Zn <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> + 3H <sub>2</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 2u ' u ¯ −18 cm                                                 |                   |   |
| u = −27 cm  1/2  32  (A)  • The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • 3Zn + 2H <sub>3</sub> PO <sub>4</sub> → Zn <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> + 3H <sub>2</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3 1                                                             |                   |   |
| <ul> <li>(A)</li> <li>The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.</li> <li>Law of conservation of mass.</li> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | $\therefore \frac{1}{2u} \equiv \frac{18  \text{cm}}{1}$        |                   |   |
| <ul> <li>(A)</li> <li>The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.</li> <li>Law of conservation of mass.</li> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 | 1,                | 0 |
| <ul> <li>The number of atoms of each element remains same before and after a chemical reaction / to satisfy the law of conservation of mass.</li> <li>Law of conservation of mass.</li> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                                 | 1/2               | 3 |
| after a chemical reaction / to satisfy the law of conservation of mass.  • Law of conservation of mass.  • Mass can neither be created nor destroyed in a chemical reaction.  • 3Zn + 2H <sub>3</sub> PO <sub>4</sub> → Zn <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> + 3H <sub>2</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 |                                                                 |                   |   |
| <ul> <li>mass.</li> <li>Law of conservation of mass.</li> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                 |                   |   |
| <ul> <li>Law of conservation of mass.</li> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                 | 1/2               |   |
| <ul> <li>Mass can neither be created nor destroyed in a chemical reaction.</li> <li>3Zn + 2H<sub>3</sub>PO<sub>4</sub> → Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3H<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 |                   |   |
| reaction.<br>• $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                                 |                   |   |
| $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                                                 | 1                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 |                   |   |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$   | 1                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | OR                                                              |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                 |                   |   |



|    | <ul> <li>Any reaction in which a precipitate (insoluble substance) is formed is called a precipitation reaction.</li> <li>Example: when sodium sulphate solution is added to the barium chloride solution a white precipitate of barium sulphate is formed.</li> <li>Na<sub>2</sub>SO<sub>4</sub> (aq)+ BaCl<sub>2</sub>(aq) → BaSO<sub>4</sub> (s)+ 2NaCl(aq)</li> </ul> | 1 1 1    | 2 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | ppt                                                                                                                                                                                                                                                                                                                                                                       |          | 3 |
|    | (any other example)                                                                                                                                                                                                                                                                                                                                                       |          |   |
| 33 | <ul> <li>Limitations of electrical impulse:</li> <li>They reach only those cells that are connected by nervous tissue, and not every cell in the animal body.</li> </ul>                                                                                                                                                                                                  | 1        |   |
|    | <ul> <li>Once an electrical impulse is generated in a cell and transmitted, the cell will take some time to reset its mechanism before it can generate and transmit a new impulse. / Takes sometime to reset its mechanism.  (any other limitation)</li> </ul>                                                                                                            | 1        |   |
|    | • In chemical communication the signals (chemical compound) potentially reach all cells of the body steadily and persistently providing the desired changes.                                                                                                                                                                                                              | 1        |   |
|    |                                                                                                                                                                                                                                                                                                                                                                           |          | 3 |
|    | SECTION D                                                                                                                                                                                                                                                                                                                                                                 |          |   |
| 34 | <ul> <li>(A) (i)</li> <li>Structural isomers: compounds with identical molecular formula but different structures.</li> </ul>                                                                                                                                                                                                                                             | 1        |   |
|    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                      | 1/2 +1/2 |   |
|    | • Reason: In propane there are three carbon atoms whose branching is not possible. / Two different skeletal or structures are not possible.                                                                                                                                                                                                                               | 1        |   |
|    | <ul> <li>(ii)</li> <li>Carbon dioxide, water, heat and light are produced.</li> <li>Chemical equation:</li> </ul>                                                                                                                                                                                                                                                         | 1/2      |   |
|    | $2C_4H_{10} + 13 O_2 \longrightarrow 8CO_2 + 10H_2O + \text{heat and light.}$ (ignore balancing)                                                                                                                                                                                                                                                                          | 1/2      |   |

|    | Butane gives blue flame                                                                                                                                                                                     | 1/2 |   |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
|    | Butyne gives yellow flame with smoke/sooty flame.                                                                                                                                                           | 1/2 |   |  |
|    | OR                                                                                                                                                                                                          |     |   |  |
|    | (B) (i)  • Carbon can gain four electrons forming C anion but it would be difficult for the nucleus with six protons to hold on ten electrons.                                                              |     |   |  |
|    | • Carbon can lose a four electrons forming C but it would require a large amount of energy to remove four electrons leaving behind a carbon cation with six protons. Thus, carbon forms covalent compounds. | 1   |   |  |
|    | (ii) An atom or a group of atoms/heteroatoms which determines the chemical properties of an organic compound is called functional group.                                                                    | 1   |   |  |
|    | Name Structural formula Functional group  (a) Ethanol H H H H H H H H H H H H H H H H H H H                                                                                                                 |     |   |  |
|    | (b) Ethanoic Acid  H O O O O O O O O O O O O O O O O O O                                                                                                                                                    | ½x4 | 5 |  |
| 35 | (A) (i)                                                                                                                                                                                                     |     |   |  |
|    | Correct Pattern Correct direction                                                                                                                                                                           | 1 1 |   |  |

|    | (ii) (a)                                                                                                                                                                                                          |      |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
|    | • red wire : Live wire                                                                                                                                                                                            |      |   |
|    | black wire : Neutral wire                                                                                                                                                                                         | 1/ 2 |   |
|    | • green wire : Earth wire                                                                                                                                                                                         | ½x3  |   |
|    | (b) 220 V                                                                                                                                                                                                         | 1/2  |   |
|    | (c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock. | 1    |   |
|    | OR                                                                                                                                                                                                                |      |   |
|    | (B)(i)                                                                                                                                                                                                            |      |   |
|    | (a) The conductor AB gets displaced.                                                                                                                                                                              | 1    |   |
|    | (b)                                                                                                                                                                                                               | 1    |   |
|    | - By reversing the direction of the current.                                                                                                                                                                      |      |   |
|    |                                                                                                                                                                                                                   | 1+1  |   |
|    | - By reversing the direction of the magnetic field.                                                                                                                                                               |      |   |
|    | (ii)When the direction of current is at right angles to the direction of the magnetic field.                                                                                                                      | 1    |   |
|    | (iii)Stretch the thumb, fore finger and middle finger of your left hand such                                                                                                                                      |      |   |
|    | that they are mutually perpendicular. If the first finger points in the direction                                                                                                                                 |      |   |
|    | of magnetic field and the second finger in the direction of the current, then                                                                                                                                     | 1    | 5 |
|    | the thumb will point in the direction of the force acting on the conductor.                                                                                                                                       |      |   |
| 36 | (A) (i)                                                                                                                                                                                                           |      |   |
|    | Regeneration: The ability to give rise to new individual organism                                                                                                                                                 |      |   |
|    | from their body parts / If the individual is somehow cut or broken up                                                                                                                                             | 1    |   |
|    | into many pieces, then each piece grows into a new organism.                                                                                                                                                      |      |   |
|    | Organism show regeneration: Planaria /Hydra                                                                                                                                                                       | 1/2  |   |
|    | Organism does not show regeneration: Spirogyra                                                                                                                                                                    | 1/2  |   |
|    | (any other example)                                                                                                                                                                                               |      |   |
|    | Because it does not have specialised cells which proliferate to make  new cells type and tissues.                                                                                                                 | 1    |   |
|    | new cells type and tissues.                                                                                                                                                                                       | 1    |   |
|    | (ii)                                                                                                                                                                                                              |      |   |
|    | • Spirogyra.                                                                                                                                                                                                      | 1/2  |   |
|    | It reproduces through Fragmentation.                                                                                                                                                                              | 1/2  |   |

|            | It simply breaks up into smaller pieces upon maturation. The pieces grow into new individuals. | 1        |   |
|------------|------------------------------------------------------------------------------------------------|----------|---|
|            | OR                                                                                             |          |   |
|            | (B)(i) (a) vas deferens                                                                        |          |   |
|            | (b) testes                                                                                     |          |   |
|            |                                                                                                |          |   |
|            | (c) prostate gland/ seminal vesicles                                                           |          |   |
|            | (d) scrotum  (ii) Consists of constitutional has a tail for maximum amall in size              | ½x4      |   |
|            | (ii) Consists of genetic material, has a tail for movement, small in size.                     | /2/1     |   |
|            | (any two)                                                                                      | ½x2      |   |
|            |                                                                                                |          |   |
|            | Vas deferens in the males and fallopian tube in females is blocked to                          |          |   |
|            | prevent fertilization.                                                                         | ½x2      |   |
|            | <ul> <li>Can cause infections if not performed properly.</li> </ul>                            | 1        | 5 |
|            | SECTION E                                                                                      |          |   |
| 37         | (i) A rainbow (or any other)                                                                   | 1        |   |
|            | (ii) Dispersion of white light takes place.                                                    | 1        |   |
|            | (iii) (A)                                                                                      |          |   |
|            | <ul> <li>The presence of water droplets in the atmosphere.</li> </ul>                          |          |   |
|            | The sun must be at the back of the observer.                                                   | 1+1      |   |
|            | The ban mast of at the basis of the basis.                                                     |          |   |
|            | OR                                                                                             |          |   |
|            | (iii) (B)                                                                                      |          |   |
|            |                                                                                                |          |   |
|            | Raindrop                                                                                       |          |   |
|            | Suntight a a ⇔ b                                                                               | ½ x4     |   |
|            | (½ mark for diagram and ½ for labelling a,b,c)                                                 |          | 4 |
| 38         | (i) Hydrochloric acid/ HCl and Sodium hydroxide / NaOH                                         | 1/2 +1/2 |   |
| <i>J</i> 0 | (ii) -Neutral                                                                                  |          |   |

|    |                                                                                                         | 1     | 1 |
|----|---------------------------------------------------------------------------------------------------------|-------|---|
|    | - as it is a salt of strong acid and strong base.                                                       | 1/2   |   |
|    | (iii) (A)                                                                                               |       |   |
|    | Aqueous solution of sodium chloride (brine) decomposes                                                  | 17    |   |
|    | (electrolysed) and produces:                                                                            | 1/2   |   |
|    | NaOH solution near cathode                                                                              |       |   |
|    | • Cl <sub>2</sub> at anode                                                                              |       |   |
|    | H <sub>2</sub> at cathode                                                                               | ½ x3  |   |
|    | OR                                                                                                      |       |   |
|    | (iii) (B)                                                                                               |       |   |
|    | Washing soda is obtained from sodium chloride by following reactions:                                   |       |   |
|    | • $NaCl + H_2O + CO_2 + NH_3 \longrightarrow NH_4Cl + NaHCO_3$                                          |       |   |
|    | • $2\text{NaHCO}_3 \xrightarrow{\text{Heat}} \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$ |       |   |
|    | Recrystallisation of sodium carbonate gives washing soda.                                               |       |   |
|    | • $Na_2CO_3 + 10H_2O \longrightarrow Na_2CO_3 .10H_2O$                                                  | ½ x 4 |   |
|    | O.P. d                                                                                                  |       | 4 |
| 39 | (i) Reflex action.                                                                                      | 1/2   |   |
|    | The sudden action in response to stimuli in the environment.                                            | 1/2   |   |
|    | (ii)                                                                                                    |       |   |
|    | (a) Motor neuron – carries message from spinal cord to the effector                                     | 1/2   |   |
|    | organ/muscle.                                                                                           |       |   |
|    | (b) Relay neuron – Connects sensory neuron to motor neuron.                                             | 17    |   |
|    |                                                                                                         | 1/2   |   |
|    | (iii)                                                                                                   |       |   |
|    | (A) -Central Nervous system.                                                                            |       |   |
|    | Components: Brain; spinal cord ,                                                                        |       |   |
|    | -Peripheral Nervous system.                                                                             | ½ x4  |   |
|    | Components: cranial nerves ; spinal nerves.                                                             |       |   |
|    |                                                                                                         |       |   |
|    | OR                                                                                                      |       |   |
|    | (iii)(B)                                                                                                |       |   |
|    | (a) Fore-brain/Cerebrum                                                                                 |       |   |
|    | (b) Cerebellum / Hind-brain                                                                             |       |   |
|    | (c) Medulla/ Hind-brain                                                                                 | ½ x4  |   |
|    | (d) Fore-brain                                                                                          |       | 4 |

## Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Secondary School Certificate Examination, 2025
SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/3)

| Canaral | Instructions: - |
|---------|-----------------|
| General | msuuchons       |

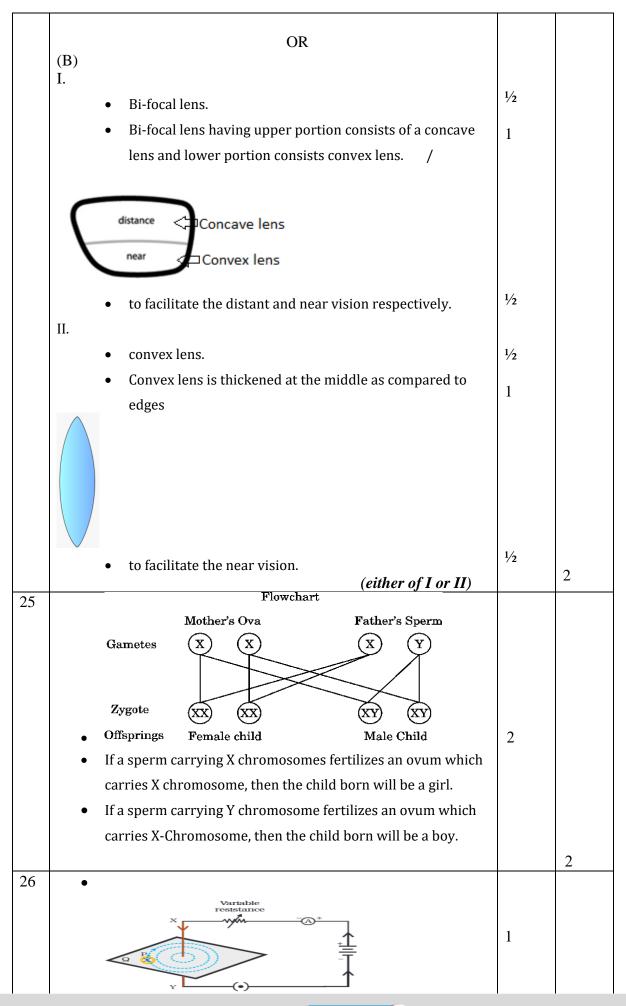
- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking Scheme carries only suggested value points for the answers.

  These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- **6** Evaluators will mark( √ ) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.



12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. 14 While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. 15 Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. 16 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation. 17 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. 18 The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.




#### SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086)
[ Paper Code:31/4/3]

**Maximum Marks: 80** 

|          | Maximum Marks: 80                                                                                        |           |                    |  |  |
|----------|----------------------------------------------------------------------------------------------------------|-----------|--------------------|--|--|
| Q.<br>No | EXPECTED ANSWERS / VALUE POINTS                                                                          | Mark<br>s | Total<br>Mark<br>s |  |  |
| •        | SECTION A                                                                                                | _         | l B                |  |  |
| 1        | (c)/ DDT                                                                                                 | 1         | 1                  |  |  |
| 2        | (c)/ plants-→ man                                                                                        | 1         | 1                  |  |  |
| 3        | (b)/ magnesium                                                                                           | 1         | 1                  |  |  |
| 4        | (c)/ glass slab                                                                                          | 1         | 1                  |  |  |
| 5        | (d)/9                                                                                                    | 1         | 1                  |  |  |
| 6        | (d)/ Melting of glaciers                                                                                 | 1         | 1                  |  |  |
| 7        | (a)/ Calcium chloride                                                                                    | 1         | 1                  |  |  |
| 8        | (d)/ Propyne                                                                                             | 1         | 1                  |  |  |
| 9        | (b)/ Nitrogen                                                                                            | 1         | 1                  |  |  |
| 10       | (c)/60                                                                                                   | 1         | 1                  |  |  |
| 11       | (a)/ 4400 Ω                                                                                              | 1         | 1                  |  |  |
| 12       | (b)/ B and D                                                                                             | 1         | 1                  |  |  |
| 13       | (c)/ seeds                                                                                               | 1         | 1                  |  |  |
| 14       | (c)/ 100%; 75%                                                                                           | 1         | 1                  |  |  |
| 15       | (a)/ anther                                                                                              | 1         | 1                  |  |  |
| 16       | (c)/ 40cm                                                                                                | 1         | 1                  |  |  |
| 17       | (a) / / Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A).   | 1         | 1                  |  |  |
| 18       | (d) // Assertion (A) is false but Reason (R) is true.                                                    | 1         | 1                  |  |  |
| 19       | (d) // Assertion (A) is false but Reason (R) is true.                                                    | 1         | 1                  |  |  |
| 20       | (b) / Both Assertion and Reason are true and Reason (R) is not the correct explanation of Assertion (A). | 1         | 1                  |  |  |

| SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| Silver bromide (AgBr) / Silver chloride (AgCl)                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |   |
| Endothermic Reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2      |   |
| Justification: Requires energy/requires sunlight for breaking down                                                                                                                                                                                                                                                                                                                                                                                    | 1/2      |   |
| the reactant.                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2 |
| 22 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |
| $\bullet  \text{Ca} \xrightarrow{\text{Ca}} \text{Ca} \xrightarrow{\text{Ca}} \text{Ca} - \text{Ca}$                                                                                                                                                                                                                                                                                                                                                  | 1/2      |   |
| $Cl + e^{-} \longrightarrow Cl^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2      |   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 2      |   |
| $Ca : \begin{array}{c} \overset{\times \times}{\underset{\times \times}{\times}} \\ + & \overset{\times \times}{\underset{\times \times}{\times}} \\ \overset{\times}{\underset{\times}{\times}} \\ & Cl \\ \times \times \end{array} \longrightarrow \begin{array}{c} [Ca^{2+}] \begin{bmatrix} \overset{\times \times}{\underset{\times}{\times}} \\ \overset{\times}{\underset{\times}{\times}} \end{bmatrix}_2 \\ Calcium \ chloride \end{array}$ | 1        |   |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |   |
| <ul> <li>(B)</li> <li>Amphoteric oxide can react with both acids as well as bases to form salt and water.</li> <li>Reactions:</li> </ul>                                                                                                                                                                                                                                                                                                              | 1        |   |
| $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2      |   |
| $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ (ignore balancing)                                                                                                                                                                                                                                                                                                                                                                                      | 1/2      | 2 |
| 23 • Xylem and Phloem                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2 +1/2 | 2 |
| <ul> <li>Xylem – transports water and minerals obtained from the soil</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |          |   |
| into the different parts of the plant.                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2      |   |
| Phloem – Transports food from leaves to other parts of the                                                                                                                                                                                                                                                                                                                                                                                            |          |   |
| plant./ translocation of soluble products.                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2      | 2 |
| 24 (A)  Incident ray  (one mark for diagram and ½ for labelling.)                                                                                                                                                                                                                                                                                                                                                                                     | 1½       |   |
| Angle of deviation                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2      |   |



|    | Right hand thumb rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     | 2 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|
|    | SECTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                     |   |
| 27 | Object should be placed between F and P / At less than 18cm distance from the mirror.  Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                                                                                                                                                                                                                                                                                                                                                 | 1 1/2                 |   |
|    | Magnification m = +2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = +2$ $\therefore v = -2u$ $\frac{1}{-2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$                                                                                                                                                                                                                                                                                                                                                   | 1                     |   |
| 28 | $\frac{1}{2u} = \frac{1}{-18 \text{ cm}}$ $U = -9 \text{ cm}$ • Electrolytic refining                                                                                                                                                                                                                                                                                                                                                                                                             | <i>y</i> <sub>2</sub> | 3 |
|    | • In this process, the impure metal is made the anode and thin strip of pure metal is made the cathode. A solution of metal salt is used as an electrolyte; on passing the current through the electrolyte the pure metal from the anode dissolves into the electrolyte. An equivalent amount of pure metal from the electrolyte is deposited on the cathode. The soluble impurities go into the solution, whereas, the insoluble impurities settle down at the anode and are known as anode mud. | 2                     |   |
|    | Cathode  Acidified copper sulphate solution  Cu²  Cu²  Cu²  Cu²  Cu²  Cu²  Cu²  Cu                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 3 |

| 29 | The breakdown of glucose to form <i>pyruvate</i> or <i>pyruvic acid</i> .   | 1/2     |   |
|----|-----------------------------------------------------------------------------|---------|---|
|    | Occurs in <i>cytoplasm</i> of the cell.                                     | 1/2     |   |
|    | (i) In the presence of oxygen:                                              |         |   |
|    | In Presence of cytoplasm oxygen                                             |         |   |
|    | Glucose Pyruvate oxygen Carbon dioxide + Water + Energy                     | 1       |   |
|    | (ii) Due to lack of oxygen                                                  |         |   |
|    | ln                                                                          |         |   |
|    | Glucose — Pyruvate — Lack of oxygen Lactic acid + Energy                    | 1       |   |
| 30 | •                                                                           |         | 3 |
| 30 | (A)                                                                         |         |   |
|    | The number of atoms of each element remains same                            |         |   |
|    | before and after a chemical reaction / to satisfy the law                   | 1/2     |   |
|    | of conservation of mass.                                                    |         |   |
|    | Law of conservation of mass.                                                | 1/2     |   |
|    | Mass can neither be created nor destroyed in a chemical                     | 1       |   |
|    | reaction.                                                                   |         |   |
|    | $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$               | 1       |   |
|    | OR                                                                          |         |   |
|    |                                                                             |         |   |
|    | (B)                                                                         |         |   |
|    | Any reaction in which a precipitate (insoluble substance) is formed is      | 1       |   |
|    | called a precipitation reaction.                                            |         |   |
|    | Example: when sodium sulphate solution is added to the barium               | 1       |   |
|    | chloride solution a white precipitate of barium sulphate is formed.         | 1       |   |
|    | $Na_2SO_4$ (aq)+ $BaCl_2$ (aq) $\longrightarrow$ $BaSO_4$ (s)+ $2NaCl$ (aq) |         |   |
|    | ppt (any other example)                                                     | 1       |   |
|    | (any other example)                                                         |         |   |
| 31 | December and the minus arrantees which have him at                          |         | 3 |
|    | Decomposers are the microorganisms which breakdown the complex              | 1       |   |
|    | organic substances into simple inorganic substances.                        |         |   |
|    | Examples: bacteria and fungi                                                | 1/1/    |   |
|    | The simple substances formed by decomposition go into the soil and          | 1/2+1/2 |   |
|    | are used up once more by the plants, thus maintain balance of an            | 1       |   |
|    | ecosystem.                                                                  |         | 3 |
| 32 | The work done to move a unit charge from one point to other                 |         | - |
|    | in a conductor. / (V=W/Q)                                                   | 1       |   |
|    | • volt (V)                                                                  | 1/2     |   |
|    |                                                                             |         |   |
|    |                                                                             |         |   |



|    | T                                                                                                                                                                                                                 |     | , |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|    | In a current carrying conductor, when one joule of work is done to move a charge of 1 coulomb from one point to                                                                                                   | 1   |   |
|    | another.                                                                                                                                                                                                          | 1/2 |   |
|    | • 1 volt = 1 joule/1 coulomb or $1V=1 \text{ J C}^{-1}$                                                                                                                                                           | , - | 3 |
| 33 | Limitations of electrical impulse:                                                                                                                                                                                |     |   |
|    | They reach only those cells that are connected by nervous                                                                                                                                                         |     |   |
|    | tissue, and not every cell in the animal body.                                                                                                                                                                    | 1   |   |
|    | Once an electrical impulse is generated in a cell and                                                                                                                                                             |     |   |
|    | transmitted, the cell will take some time to reset its                                                                                                                                                            |     |   |
|    | mechanism before it can generate and transmit a new                                                                                                                                                               | 1   |   |
|    | impulse. / Takes sometime to reset its mechanism.                                                                                                                                                                 |     |   |
|    | (any other limitation)                                                                                                                                                                                            |     |   |
|    | To show itself a communication the signals (showing)                                                                                                                                                              |     |   |
|    | • In chemical communication the signals (chemical compound) potentially reach all cells of the body steadily                                                                                                      | 1   |   |
|    | and persistently providing the desired changes.                                                                                                                                                                   | 1   | 2 |
|    | SECTION D                                                                                                                                                                                                         |     | 3 |
| 34 | (A)                                                                                                                                                                                                               |     |   |
|    | (i)                                                                                                                                                                                                               |     |   |
|    | Correct Pattern                                                                                                                                                                                                   | 1   |   |
|    | Correct direction                                                                                                                                                                                                 | 1   |   |
|    |                                                                                                                                                                                                                   |     |   |
|    | (ii) (a)                                                                                                                                                                                                          |     |   |
|    | red wire : Live wire                                                                                                                                                                                              | ½x3 |   |
|    | black wire : Neutral wire                                                                                                                                                                                         |     |   |
|    | green wire : Earth wire                                                                                                                                                                                           | 1,  |   |
|    | (b) 220 V                                                                                                                                                                                                         | 1/2 |   |
|    | (c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock. | 1   |   |
|    | OR                                                                                                                                                                                                                |     |   |
|    | (B)                                                                                                                                                                                                               |     |   |
|    | (i) (a) The conductor AB gets displaced.                                                                                                                                                                          | 1   |   |
|    |                                                                                                                                                                                                                   |     |   |

|    |                                                                                                                                                                                                                                                                                                                          | 1                           | 1 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|
|    | (b)                                                                                                                                                                                                                                                                                                                      |                             |   |
|    | By reversing the direction of the current                                                                                                                                                                                                                                                                                |                             |   |
|    | By reversing the direction of the magnetic field                                                                                                                                                                                                                                                                         | 1+1                         |   |
|    | by reversing the direction of the magnetic field                                                                                                                                                                                                                                                                         |                             |   |
|    | (ii)When the direction of current is at right angles to the direction                                                                                                                                                                                                                                                    |                             |   |
|    | of the magnetic field.                                                                                                                                                                                                                                                                                                   | 1                           |   |
|    | (iii)Stretch the thumb, fore finger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of the current, then the thumb will point in the direction of the force acting on the conductor. | 1                           | 5 |
| 35 | (A)                                                                                                                                                                                                                                                                                                                      |                             |   |
|    | A – Stigma ; B – Anther                                                                                                                                                                                                                                                                                                  | $\frac{1}{2} + \frac{1}{2}$ |   |
|    | • pollen germinate to form pollen tube which carries male germ cells                                                                                                                                                                                                                                                     | ,21,2                       |   |
|    | to the egg cell in the ovule of the ovary.                                                                                                                                                                                                                                                                               |                             |   |
|    | Fusion of germ cells/fertilization gives rise to zygote.                                                                                                                                                                                                                                                                 |                             |   |
|    | • Zygote divides to form an embryo within the ovule. Ovule develops                                                                                                                                                                                                                                                      |                             |   |
|    | and converted into a seed.                                                                                                                                                                                                                                                                                               | 1x4                         |   |
|    | • Ovary grows rapidly to form a fruit. Petals, sepals, stamens, style,                                                                                                                                                                                                                                                   |                             |   |
|    | etc. shrivel and fall off.                                                                                                                                                                                                                                                                                               |                             |   |
|    | OR                                                                                                                                                                                                                                                                                                                       |                             |   |
|    | (B)                                                                                                                                                                                                                                                                                                                      |                             |   |
|    | Changes after fertilization:                                                                                                                                                                                                                                                                                             |                             |   |
|    | Fertilisation results in the formation of a zygote.                                                                                                                                                                                                                                                                      |                             |   |
|    | • Zygote starts dividing to form an embryo, which is implanted in the                                                                                                                                                                                                                                                    |                             |   |
|    | lining of the uterus.                                                                                                                                                                                                                                                                                                    |                             |   |
|    | Embryo continues to grow and derive nutrition through placenta.                                                                                                                                                                                                                                                          | 1x3                         |   |
|    | Role of placenta –                                                                                                                                                                                                                                                                                                       |                             |   |
|    | To provide oxygen and glucose to the embryo from mother's blood                                                                                                                                                                                                                                                          | 1                           |   |
|    | To remove waste substances generated by the developing embryo.                                                                                                                                                                                                                                                           |                             |   |
|    | If the egg is not fertilized:  • the lining of the uterus slowly breaks and comes out through the vagina as blood and mucous./ menstruation will occur.                                                                                                                                                                  | 1                           | 5 |
|    |                                                                                                                                                                                                                                                                                                                          |                             |   |



| 36 | (A) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | 1/2; 1/2 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    | $\begin{array}{ccc} & H & H \\ &   &   \\ &   & \\ Compound \ B: \ Ethene; & H-C=C-H \\ & & / \ C_2H_4 \end{array}$                                                                                      | 1/2; 1/2 |
|    | Compound C: Ethane ; $H-C-C-H/C_2H_6$ $H/H$                                                                                                                                                              | 1/2; 1/2 |
|    | CH <sub>3</sub> CH <sub>2</sub> OH $\xrightarrow{Hot\ Conc\ _{H_2}S_{O_4}}$ CH <sub>2</sub> = CH <sub>2</sub> + H <sub>2</sub> O  'A'  'B'  Conc. H <sub>2</sub> SO <sub>4</sub> is a dehydrating agent. | 1/2      |
|    | $ \begin{array}{ccc} H & H \\  &   &   \\ H - C = C - H + H_2 & \xrightarrow{\text{Ni}} CH_3 - CH_3 \end{array} $ 'B' 'C'                                                                                | 1/2      |
|    | $C_2H_6 + 7/2 O_2 \longrightarrow 2CO_2 + 3H_2O$ 'C'                                                                                                                                                     | 1/2      |
|    | (ignore balancing)                                                                                                                                                                                       |          |
|    |                                                                                                                                                                                                          |          |
|    | OR  (B) $H 	 OH$ $  	   	  $ (i) A - Ethanoic acid ; $H - C - C = O / CH_3COOH$                                                                                                                          | 1/2 +1/2 |
|    | (ii) $CH_3COOH + C_2H_5OH \xrightarrow{a cid} CH_3COOC_2H_5$ 'A' 'B'                                                                                                                                     | 1/2      |
|    | Role of acid – As a catalyst                                                                                                                                                                             | 1/2      |



|    | (iii) By adding dil. NaOH to B (ester) /saponification / by adding water with acid or base/ on addition of NaOH, sodium salt of acid is produced which is further hydrolysed to form 'A' | 1        |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | (iv) By adding solution of alkaline potassium permanganate or acidified potassium dichromate in warm ethanol./                                                                           | 1        |   |
|    | $CH_3 - CH_2OH \xrightarrow{Alkaline \ KMnO_4 + Heat} CH_3COOH \xrightarrow{Or \ acidified \ K_2Cr_2O_7 + Heat} CH_3COOH$                                                                |          |   |
|    | (v) Carbon dioxide/ CO <sub>2</sub>                                                                                                                                                      | 1        | 5 |
|    | SECTION E                                                                                                                                                                                | ·L       | l |
| 37 | <ul><li>(i) A rainbow (or any other)</li><li>(ii) Dispersion of white light takes place.</li><li>(iii) (A)</li></ul>                                                                     | 1 1      |   |
|    | <ul> <li>The presence of water droplets in the atmosphere.</li> <li>The sun must be at the back of the observer.</li> </ul>                                                              | 1+1      |   |
|    | OR                                                                                                                                                                                       |          |   |
|    | (iii) (B)                                                                                                                                                                                |          |   |
|    | Sunlight Raindrop  \$\hat{\hat{v}} \tag{\hat{v}} \tag{\hat{v}} \tag{\hat{v}} \tag{\hat{v}}                                                                                               | ½ x4     |   |
|    | (½ mark for diagram and ½ for labelling a, b, c)                                                                                                                                         |          | 4 |
| 38 | (i) Hydrochloric acid/ HCl and Sodium hydroxide / NaOH (ii)                                                                                                                              | 1/2 +1/2 |   |
|    | -Neutral                                                                                                                                                                                 | 1/2      |   |
|    | <ul><li>- as it is a salt of strong acid and strong base.</li><li>(iii) (A)</li></ul>                                                                                                    | 1/2      |   |
|    | <ul> <li>Aqueous solution of sodium chloride(brine) decomposes         (electrolysed) and produces:</li> <li>NaOH solution near cathode</li> </ul>                                       | 1/2      |   |



|    |                                      | . Cl. at anoda                                                                        | ½ x3   |   |
|----|--------------------------------------|---------------------------------------------------------------------------------------|--------|---|
|    |                                      | Cl <sub>2</sub> at anode                                                              |        |   |
|    |                                      | H <sub>2</sub> at cathode                                                             |        |   |
|    |                                      | OR                                                                                    |        |   |
|    |                                      | OK                                                                                    |        |   |
|    | (iii)(B)                             |                                                                                       |        |   |
|    | Washing so                           | da is obtained from sodium chloride by following                                      |        |   |
|    | reactions:                           |                                                                                       |        |   |
|    | NaCl + H <sub>2</sub> O              | $+ CO_2 + NH_3 \longrightarrow NH_4Cl + NaHCO_3$                                      |        |   |
|    | 2NaHCO <sub>3</sub> -                | $\xrightarrow{\text{Heat}} \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$ |        |   |
|    | Recrystallis                         | ation of sodium carbonate gives washing soda.                                         | ½ x 4  | 4 |
|    | Na <sub>2</sub> CO <sub>3</sub> + 10 | $OH_2O \longrightarrow Na_2CO_3.10H_2O$                                               | /2 X 4 | 7 |
| 39 | (i) Reflex a                         | ction.                                                                                | 1/2    |   |
|    | The sudden                           | action in response to stimuli in the environment.                                     | 1/2    |   |
|    | (ii)                                 |                                                                                       | /2     |   |
|    | (a) Motor n                          | euron – carries message from spinal cord to the effector                              |        |   |
|    | organ/mus                            | cle                                                                                   | 1/2    |   |
|    | (b)Relay r                           | neuron – Connects sensory neuron to motor neuron.                                     |        |   |
|    | (iii)                                |                                                                                       | 1/2    |   |
|    | Central Ner                          | vous system.                                                                          |        |   |
|    | Compon                               | ents: Brain; spinal cord                                                              |        |   |
|    | Peripheral 1                         | Nervous system.                                                                       | ½ x4   |   |
|    | Compon                               | ents: cranial nerves ; spinal nerves.                                                 |        |   |
|    |                                      | OR                                                                                    |        |   |
|    | (iii)(B)                             |                                                                                       |        |   |
|    | (a)                                  | Fore-brain/Cerebrum                                                                   |        |   |
|    | (b)                                  | Cerebellum / Hind-brain                                                               |        |   |
|    | (c)                                  | Medulla/ Hind-brain                                                                   | 16 7:4 |   |
|    | (d)                                  | Fore-brain                                                                            | ½ x4   |   |
|    |                                      |                                                                                       |        | 4 |



#### अंकन योजना पूरी तरह से गोपनीय माध्यमिक विद्यालय परीक्षा, 2025

(केवल आंतरिक और प्रतिबंधित उपयोग के लिए) विषय का नाम: विज्ञान विषय कोड: 086 पेपर कोड: 31/4/1 सामान्य निर्देश: -आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें। "मुल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मुल्यांकन और कई अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित कर सकता है। मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कडाई से पालन किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मृल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते हैं। कक्षा-x में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय, कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए। अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए। प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मुल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है। जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (🗸) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं। यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके. यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना चाहिए। इसका भी सख्ती से पालन किया जा सकता है. यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए। किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया 10 जाना चाहिए। बिंदु का एक पूर्ण स्कैन \_80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें। प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मुल्यांकन कार्य करना 12 होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन 25 उत्तर

पुस्तिकाओं का मुल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)।

सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न करें:-किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना।





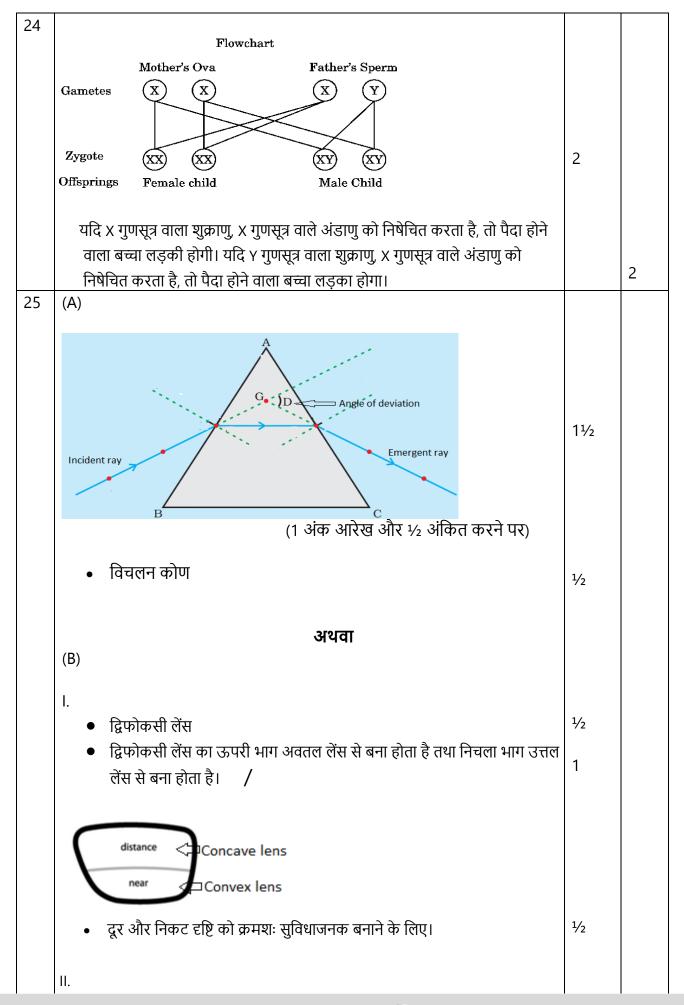


- किसी उत्तर पर दिए गए अंकों का गलत योग।
- उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग।
- उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड़ देना।
- शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग।
- गलत योग।
- शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं।
- उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण।
- उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।)
- उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया।
- 14 उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए।
- 15 किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल त्रुटि से मूल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए।
- 16 परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में दिए गए दिशानिर्देशों से परिचित होना चाहिए।
- 17 प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है।
- 18 उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।



#### माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

कक्षा: x विज्ञान (विषय कोड-086) [ प्रश्न पत्र कोड: 31/4/1]


अधिकतम अंक: 80

|            | आधकतम अक: 80                                                                                    |     |            |  |  |  |
|------------|-------------------------------------------------------------------------------------------------|-----|------------|--|--|--|
| प्र.<br>सं | अपेक्षित उत्तर / मूल्य बिंदु                                                                    | अंक | कुल<br>अंक |  |  |  |
|            | खण्ड - क                                                                                        |     |            |  |  |  |
| 1          | (d)/ग्लेशियर( हिमनदी ) का पिघलना                                                                | 1   | 1          |  |  |  |
| 2          | (a)/ कैल्शियम क्लोराइड                                                                          | 1   | 1          |  |  |  |
| 3          | (b)/ आघातवर्ध्यता                                                                               | 1   | 1          |  |  |  |
| 4          | (d)/ प्रोपाइन                                                                                   | 1   | 1          |  |  |  |
| 5          | (b)/ नाइट्रोजन                                                                                  | 1   | 1          |  |  |  |
| 6          | (b)/ B और D                                                                                     | 1   | 1          |  |  |  |
| 7          | (c)/ৰীज                                                                                         | 1   | 1          |  |  |  |
| 8          | (a)/ परागकोश                                                                                    | 1   | 1          |  |  |  |
| 9          | (c)/100%; 75%                                                                                   | 1   | 1          |  |  |  |
| 10         | (c)/40cm                                                                                        | 1   | 1          |  |  |  |
| 11         | (c)/ कांच का स्लैब                                                                              | 1   | 1          |  |  |  |
| 12         | (d)/9                                                                                           | 1   | 1          |  |  |  |
| 13         | (a)/4400 Ω                                                                                      | 1   | 1          |  |  |  |
| 14         | (c)/60                                                                                          | 1   | 1          |  |  |  |
| 15         | (c)/पौधे> मनुष्य                                                                                | 1   | 1          |  |  |  |
| 16         | (c)/DDT                                                                                         | 1   | 1          |  |  |  |
| 17         | (d) /अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                                | 1   | 1          |  |  |  |
| 18         | (d) /अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                                | 1   | 1          |  |  |  |
| 19         | (a) / अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A)<br>की सही व्याख्या करता है । | 1   | 1          |  |  |  |
| 20         | (d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                                | 1   | 1          |  |  |  |
|            |                                                                                                 |     |            |  |  |  |



|    | खण्ड – ख                                                                                                                                                               |     |   |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
| 21 | <ul> <li>किसी पदार्थ में ऑक्सीजन की वृधि या हाइड्रोजन का ह्वास होना ऑक्सीकरण<br/>(उपचयन) होता है / इलेक्ट्रानों का ह्वास</li> <li>हाइड्रोजन / H<sub>2</sub></li> </ul> | 1   |   |  |
| 22 | • (१२०० / ११२                                                                                                                                                          | 1   | 2 |  |
| 22 | (A) $Mg : \begin{array}{c} & \times $           | 1   |   |  |
|    | • ऋणायन - क्लोराइड आयन / (Cl <sup>-</sup> )                                                                                                                            | 1/2 |   |  |
|    | • धनायन - मैग्नीशियम आयन / (Mg²+)                                                                                                                                      | 1/2 |   |  |
|    |                                                                                                                                                                        | /2  |   |  |
|    | अथवा                                                                                                                                                                   |     |   |  |
|    |                                                                                                                                                                        |     |   |  |
|    | (B)                                                                                                                                                                    |     |   |  |
|    |                                                                                                                                                                        |     |   |  |
|    | (i) यदि जिंक, सल्फाइड अयस्क के रूप में हो तब:  • भर्जन                                                                                                                 | 1/2 |   |  |
|    | • मजन $2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$                                                                                                             | 1/2 |   |  |
|    |                                                                                                                                                                        | 1/2 |   |  |
|    | - अपचयन                                                                                                                                                                | 1/2 |   |  |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                                                                                                   | , 2 |   |  |
|    |                                                                                                                                                                        |     |   |  |
|    | (ii) यदि जिंक, कार्बोनेट अयस्क के रूप में हो तब:                                                                                                                       |     |   |  |
|    | • निस्तापन                                                                                                                                                             | 1/2 |   |  |
|    | $ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$                                                                                                                                 | 1/2 |   |  |
|    | - अपचयन                                                                                                                                                                | 1/2 |   |  |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                                                                                                   | 1/2 |   |  |
|    | (i और ii में से एक)                                                                                                                                                    |     | 2 |  |
| 23 | चार युक्तियाः                                                                                                                                                          |     |   |  |
|    | ा. अपशिष्ट पदार्थी के रूप में O2 का रंध्रों के माध्यम से                                                                                                               |     |   |  |
|    | 2. अतिरिक्त जल को वाष्पोत्सर्जन द्वारा ।                                                                                                                               |     |   |  |
|    | 3. पत्तियों को गिरा कर                                                                                                                                                 |     |   |  |
|    | 4. पुराने जाइलम में रेजिन और गोंद के रूप में संग्रहित कर ।                                                                                                             |     |   |  |
|    | 5. आस-पास की मृदा में                                                                                                                                                  | ½x4 |   |  |
|    | 6.कोशिकीय रिक्तिका में संचित कर                                                                                                                                        |     |   |  |
|    |                                                                                                                                                                        |     | 2 |  |





|    |                             |                                                                                                                                         | 1                           | , |
|----|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|
|    | • उत्तल ले                  | स.                                                                                                                                      | 1/2                         |   |
|    | • उत्तल ले                  | ंस किनारों की अपेक्षा बीच से मोटा होता है 🖊                                                                                             | 1                           |   |
|    |                             |                                                                                                                                         | 1                           |   |
|    |                             |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    | • निकट ह                    | ष्ट्रि को सुविधाजनक बनाने के लिए।                                                                                                       | 1/2                         | 2 |
|    |                             | (i और ii में से कोई एक)                                                                                                                 |                             | 2 |
| 26 | <ul> <li>किसी चु</li> </ul> | म्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ 🖊                                                                              | 1                           |   |
|    |                             |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    | ~ ((                        |                                                                                                                                         |                             |   |
|    |                             | SN                                                                                                                                      |                             |   |
|    | - ((                        |                                                                                                                                         |                             |   |
|    |                             |                                                                                                                                         |                             |   |
|    | गुण:                        |                                                                                                                                         |                             |   |
|    | •                           | दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं ।                                                                             |                             |   |
|    |                             | ाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं।                                                                  |                             |   |
|    |                             | ाएँ बंद वक्र होती हैं।                                                                                                                  | $\frac{1}{2} + \frac{1}{2}$ |   |
|    |                             | के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर                                                                 |                             |   |
|    | • युम्बक<br>होती है।        | 5                                                                                                                                       |                             |   |
|    | ו קווווק                    | (कोई दो गुण)                                                                                                                            |                             | 2 |
|    |                             | (पगइ पा गुण)<br><b>खण्ड - ग</b>                                                                                                         |                             | 2 |
| 27 | (4)                         | G-0-1                                                                                                                                   |                             |   |
|    | (A)                         | सायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं                                                                     |                             |   |
|    |                             | मायानक आमाक्रया के पहेल एवं उसके पश्चयात प्रत्यक तत्व के परमाणुआ<br>या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए | 1/.                         |   |
|    |                             |                                                                                                                                         | 1/2                         |   |
|    |                             | । संरक्षण का नियम                                                                                                                       |                             |   |
|    | _                           | ो रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है                                                                      | 1/2                         |   |
|    |                             | ही विनाश ।                                                                                                                              | 1                           |   |
|    | • 3Zn + 3                   | $2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                          |                             |   |
|    |                             |                                                                                                                                         | 1                           |   |
|    |                             | अथवा                                                                                                                                    |                             |   |
|    | (B)                         |                                                                                                                                         |                             |   |
|    | <ul> <li>कोई भी</li> </ul>  | अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया                                                                     |                             |   |
|    | कहलार्त                     | ो है।                                                                                                                                   | 1                           |   |
|    | • उदाहरा                    | ग: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया                                                                            |                             |   |
|    | जाता है                     | तो बेरियम सल्फेट का सफेद अवक्षेप बनता है।                                                                                               |                             |   |
|    |                             |                                                                                                                                         |                             |   |



|    | • Na <sub>2</sub> SO <sub>4</sub> (aq) + BaCl <sub>2</sub> (aq) $\longrightarrow$ BaSO <sub>4</sub> (s) + 2NaCl(aq) ppt                                                                                                                                                                                                                                                                                                               | 1        |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | (कोई अन्य उदाहरण)                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 3 |
| 28 | कार्यकलाप:  • एक एल्युमीनियम या तांबे का तार लीजिए और उसे चित्र में दर्शाए अनुसार एक स्टैंड पर क्लैंप से बाँध दीजिए ।  • तार के एक सिरे पर मोम का उपयोग कर एक पिन चिपका दीजिए ।  • स्पिरिट लैम्प या बर्नर से क्लैंप के निकट तार को गर्म करें ।  • थोड़ी देर बाद हम देखेंगे कि मोम पिघलने पर पिन गिर जाती है लेकिन तार नहीं पिघलता है ।  • यह दर्शाता है कि धातुएं ऊष्मा की अच्छी चालक (सुचालक) होती हैं तथा उनका गलनांक उच्च होता है। | 3        |   |
|    | (चित्र आवश्यक नहीं है)                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |
|    | (कोई अन्य कार्यकलाप)                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 3 |
| 29 | (i) लार एमिलेस : स्टार्च (मंड)) को शर्करा में परिवर्तित करता है ।                                                                                                                                                                                                                                                                                                                                                                     | 1/2 +1/2 |   |
|    | (ii) पित्त लवण : अम्लीय भोजन को क्षारीय बनाना / वसा का इम्लसीकरण करता है।                                                                                                                                                                                                                                                                                                                                                             | 1/2 +1/2 |   |
|    | (iii) ट्रिप्सिन : प्रोटीन के पाचन में मदद करता है /                                                                                                                                                                                                                                                                                                                                                                                   |          |   |
|    | लाइपेस: इम्लसीकृत वसा का पाचन                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2 +1/2 |   |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 3 |
| 30 | <ul> <li>विद्युत आवेग की सीमाएँ:</li> <li>वे केवल उन कोशिकाओं तक पहुंचते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।</li> <li>एक बार जब किसी कोशिका में विद्युत आवेग जितत होता है तथा संचारित होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है ।</li> <li>(कोई अन्य सीमा)</li> </ul>                                 | 1        |   |
|    | <ul> <li>रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी<br/>कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते<br/>हैं।</li> </ul>                                                                                                                                                                                                                                                          | 1        | 3 |

| 2.1 |                                                                                                      |                             |   |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------|---|
| 31  | <ul> <li>बिम्ब को F और P के बीच रखना चाहिए / दर्पण से 18 सेमी से कम दूरी पर</li> </ul>               | 1                           |   |
|     | • दर्पण सूत्र = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                                            | 1/2                         |   |
|     | $\int \int $    |                             |   |
|     |                                                                                                      |                             |   |
|     | • आवर्धन m = +2                                                                                      |                             |   |
|     | f = – 18 cm                                                                                          |                             |   |
|     |                                                                                                      |                             |   |
|     | v                                                                                                    | 1                           |   |
|     | $m = -\frac{v}{u} = +2$                                                                              |                             |   |
|     | $\dot{v} = -2u$                                                                                      |                             |   |
|     |                                                                                                      |                             |   |
|     | <u>_1</u> + 1 =1_                                                                                    |                             |   |
|     |                                                                                                      |                             |   |
|     | 1 1                                                                                                  |                             |   |
|     | $\frac{1}{2u} = \frac{1}{-18 \text{ cm}}$                                                            | 1/2                         |   |
|     |                                                                                                      | ,,,                         | 3 |
| 32  | u = -9  cm                                                                                           |                             | ٦ |
| 32  | (i)                                                                                                  |                             |   |
|     | • A - विद्युतरोधी                                                                                    | 1/2                         |   |
|     | <ul><li>B − मिश्रातु</li></ul>                                                                       | 1/2                         |   |
|     | • C – चालक                                                                                           | 1/2                         |   |
|     | (ii)                                                                                                 |                             |   |
|     | A: प्लास्टिक – विद्युत इस्तरी का हैंडल।                                                              | 1/2                         |   |
|     | <ul> <li>B: नाइक्रोम - विद्युत इस्तरी में हीटिंग एलिमेंट / तापन तत्व के रूप</li> </ul>               | 1/2                         |   |
|     | में उपयोग किया जाता है।                                                                              | , 2                         |   |
|     |                                                                                                      | 1/                          |   |
|     |                                                                                                      | 1/2                         |   |
|     | /                                                                                                    |                             |   |
|     |                                                                                                      |                             |   |
|     | <ul> <li>A: विद्युत स्टोव: रबर के पैर।</li> </ul>                                                    |                             |   |
|     | <ul> <li>B: नाइक्रोम - विद्युत स्टोव में हीटिंग एलिमेंट / तापन तत्व के रूप में</li> </ul>            |                             |   |
|     | उपयोग किया जाता है।                                                                                  |                             |   |
|     | • C: तांबा - बिजली के तार।                                                                           |                             |   |
|     | (किसी विद्युत साधित्र में इनके उपयोग का कोई अन्य उदाहरण)                                             |                             |   |
|     | (विश्वा विश्वयुव विविध न इसके उपयोग की की किया उपविधा)                                               |                             | 3 |
| 33  | <ul> <li>अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जिटल कार्बिनक पदार्थों को सरल</li> </ul>               | 1                           |   |
|     | अकार्बनिक पदार्थों में बदल देते हैं।                                                                 |                             |   |
|     | • उदाहरण: बैक्टीरिया(जीवाणु) और कवक                                                                  | $\frac{1}{2} + \frac{1}{2}$ |   |
|     | <ul> <li>अपघटन से बने सरल पदार्थ मिट्टी(मृदा) में चले जाते हैं और पौधों द्वारा पुनः उपयोग</li> </ul> |                             |   |
|     |                                                                                                      | 1                           |   |
|     | में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का संतुलन बना रहता है (प्राकृतिक                       |                             |   |
|     | पुन: पूर्ति )।                                                                                       |                             |   |
|     |                                                                                                      |                             | 3 |



|    | <b>ख</b> ण्ड – ਬ                                                                                                                                                     |           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 34 | (A)  H H                                                                                                                                                             | 1/2 ; 1/2 |
|    | <ul> <li>H H  </li></ul>                                                                                                                                             | 1/2; 1/2  |
|    | H H                                                                                                                                                                  | 1/2; 1/2  |
|    | <ul> <li>CH<sub>3</sub>CH<sub>2</sub>OH Hot Conc H<sub>2</sub>S<sub>O4</sub> CH<sub>2</sub> = CH<sub>2</sub> + H<sub>2</sub>O</li></ul>                              | 1/2       |
|    | $\begin{array}{c} H & H \\ \mid & \mid \\ H - C = C - H + H_2 \xrightarrow{\text{Ni}} \text{CH}_3 - \text{CH}_3 \\ \\ \bullet & \text{'B'} & \text{'C'} \end{array}$ | 1/2       |
|    | • C <sub>2</sub> H <sub>6</sub> + 7/2 O <sub>2</sub> <sup>&gt;</sup> 2CO <sub>2</sub> + 3H <sub>2</sub> O<br>'C'<br>(संतुलन के लिए अंक ना काटे जाएँ)                 | 1/2       |
|    | अथवा                                                                                                                                                                 |           |
|    | (B)  H OH                                                                                                                                                            | 1/2 +1/2  |
|    | $H$ (ii) $CH_3COOH + C_2H_5OH \xrightarrow{acid} CH_3COOC_2H_5$ 'A' 'B' $CH_3COOH + C_2H_5OH \xrightarrow{acid} CH_3COOC_2H_5$                                       | 1/2       |
|    | <ul> <li>अम्ल की भूमिका – एक उत्प्रेरक की तरह</li> </ul>                                                                                                             | 1/2       |

| ſ   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |   |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
|     |    | (iii) B (एस्टर) में तनु NaOH मिलाकर / साबुनीकरण / अम्ल या क्षार के साथ जल मिलाकर / NaOH को मिलाने पर अम्ल का सोडियम लवण प्राप्त होता है जिसे फिर से हाइड्रोलाइज् कर 'A ' को प्राप्त किया जा सकता है। (iv) गर्म एथेनॉल में क्षारीय पोटेशियम परमैंगनेट या अम्लीय पोटेशियम डाइक्रोमेट का विलयन डाल कर /  CH <sub>3</sub> - CH <sub>2</sub> OH — Alkaline KMnO <sub>4</sub> + Heat Or acidified K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> + Heat 'A' (v) CO <sub>2</sub> /कार्बन डाइऑक्साइड | 1                                       |   |
|     |    | (V) CO2 / প্ৰসাৰণ ভাৱজাপনাহভ                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5 |
|     | 35 | (A) (i)  • पुनरूदभवन (पुनर्जनन): अपने शरीर के अंगों से नए जीव को जन्म देने की क्षमता / यिद किसी कारणवश जीव क्षत-विक्षत हो जाए अथवा कई टुकड़ों में काट दिया जाए, तो इसके अनेक टुकड़े वृधि कर एक नए जीव में विकसित हो जाते है।  • पुनर्जनन दर्शाने वाले जीव: प्लैनेरिया /हाइड्रा  • जीव में पुनर्जनन नहीं दिखता: स्पाइरोगाइरा (कोई अन्य उदाहरण)  • क्योंकि इसमें विशिष्ट कोशिकाएं नहीं होतीं जो नई कोशिका प्रकारों और ऊतकों का निर्माण करने के लिए प्रवर्धित होती हैं।                        | 1<br>1/ <sub>2</sub><br>1/ <sub>2</sub> |   |
|     |    | <ul> <li>(ii)</li> <li>स्पाइरोगाइरा</li> <li>ये खंडन विधि द्वारा जनन करते हैं ।</li> <li>यह विकसित होकर छोटे छोटे टुकड़ों में खंडित हो जाता है यह टुकडे अथवा खंड वृधि कर ने जीव (व्यष्टि) में विकसित हो जाते हैं ।</li> </ul> अथवा                                                                                                                                                                                                                                                          | 1/ <sub>2</sub> 1/ <sub>2</sub> 1       |   |
|     |    | जानपा<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |   |
|     |    | (B)(i) (a) शुक्रवाहिनी (b) वृषण (c) प्रोस्ट्रेट ग्रंथि / शुक्राशय (d) वृषण कोश                                                                                                                                                                                                                                                                                                                                                                                                              | ½x4                                     |   |
|     |    | (ii) शुक्राणु में आनुवांशिक पदार्थ , गति के लिए पूंछ , आकार में सूक्ष्म होते हैं ।<br>(कोई दो )                                                                                                                                                                                                                                                                                                                                                                                             | ½x2                                     |   |
| - 1 |    | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | L |

|    | <ul> <li>पुरुष की शुक्रवाहिकाओं और स्त्री की अंडवाहिनी अथवा फेलोपियन निलका को अवरुद्ध कर निषेचन को रोका जाता है ।</li> <li>असावधानीपूर्वक की गई शल्यक्रिया से संक्रमण हो सकता है ।</li> </ul>                                                                                                                            | ½x2           | 5 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|
| 36 | (A)<br>(i)                                                                                                                                                                                                                                                                                                               |               | , |
|    | सही पैटर्न<br>सही दिशा                                                                                                                                                                                                                                                                                                   | 1             |   |
|    | (ii) (a)  • लाल तार : विधुन्मय तार  • काला तार : उदासीन तार  • हरा तार : भुसंपर्क तार  (b) 220 V  (c) इसका उपयोग सुरक्षा उपाय के रूप में किया जाता है। यह सुनिश्चित करता है कि साधित्र के धातु आवरण में यदि कोई विद्युत धारा का क्षरण हो तो इसका विभव पृथ्वी के विभव के बराबर बना रहे और उपयोगकर्ता को गंभीर झटका न लगे। | ½x3<br>½<br>1 |   |
|    | अथवा                                                                                                                                                                                                                                                                                                                     |               |   |
|    | (B) (i) (a) चालक AB विस्थापित हो जाता है।                                                                                                                                                                                                                                                                                | 1             |   |
|    | b)<br>- प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर।<br>- चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर।                                                                                                                                                                                                                          | 1+1           |   |
|    | (ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।                                                                                                                                                                                                                                                  | 1             |   |
|    | (iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये<br>तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और                                                                                                                                                                  |               |   |



|    | मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो               | 1        |   |
|----|-------------------------------------------------------------------------------------|----------|---|
|    | अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की ओर संकेत                       |          |   |
|    | करेगा।                                                                              |          | 5 |
|    | <b>ख</b> ण्ड - ड                                                                    | L        |   |
| 37 | (i) हाइड्रोक्लोरिक अम्ल /HCI और सोडियम हाइड्रोक्साइड/ NaOH                          | 1/2 +1/2 |   |
|    | (ii)                                                                                |          |   |
|    | - उदासीन                                                                            | 1/2      |   |
|    | - क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है।                                   | 1/2      |   |
|    | (iii) (A)                                                                           | /2       |   |
|    | • सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजित (विद्युत अपघटन)                    |          |   |
|    | होकर उत्पन्न करता है:                                                               |          |   |
|    | हाफर उत्पन्न करता ह.                                                                | 1/2      |   |
|    |                                                                                     |          |   |
|    | • कैथोड के पास NaOH विलयन                                                           |          |   |
|    | • एनोड पर Cl₂                                                                       | ½ x3     |   |
|    | <ul> <li>कैथोड पर H₂</li> </ul>                                                     |          |   |
|    |                                                                                     |          |   |
|    | अथवा                                                                                |          |   |
|    |                                                                                     |          |   |
|    | (;;;)( <b>D</b> )                                                                   |          |   |
|    | (iii)(B)                                                                            |          |   |
|    | सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त किया जाता है: |          |   |
|    | $-NaCl + H2O + CO2 + NH3 \longrightarrow NH4Cl + NaHCO3$                            |          |   |
|    | $-2NaHCO_3 \xrightarrow{\text{Heat}} Na_2CO_3 + H_2O + CO_2$                        |          |   |
|    | - सोडियम कार्बोनेट के पुनःक्रिस्टलीकरण से धोने का सोडा प्राप्त होता है।             | ½ x 4    |   |
|    | $-Na2CO3 + 10H2O \longrightarrow Na2CO3 .10H2O$                                     | /2 X .   |   |
|    | 1102005 101120 11020051101120                                                       |          |   |
|    |                                                                                     |          | 4 |
| 38 | <b>(i)</b> प्रतिवर्ती क्रिया.:                                                      | 1/2      |   |
|    | <ul> <li>पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई</li> </ul>      | 72       |   |
|    | क्रिया।                                                                             | 1/2      |   |
|    | । प्रभा ।                                                                           |          |   |
|    |                                                                                     |          |   |
|    | (ii)                                                                                |          |   |
|    | (a) प्रेरक तंत्रिका – मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है             | 1/2      |   |
|    |                                                                                     |          |   |
|    | (b) प्रतिसारण तंत्रिका – संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।           |          |   |
|    | (iii)                                                                               | 1/2      |   |
|    | (A) - केन्द्रीय तंत्रिका तंत्र.                                                     |          |   |
|    |                                                                                     |          |   |
|    | संघटक: मस्तिष्क; मेरुरज्जु ,                                                        |          |   |
|    |                                                                                     |          | i |
|    | -परिधीय तंत्रिका तंत्र<br>संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.                  | ½ x4     |   |

|    | T                                                                     | ı    | 1 |
|----|-----------------------------------------------------------------------|------|---|
|    | अथवा                                                                  |      |   |
|    | (iii)(B)                                                              |      |   |
|    | (a) अग्र्मस्तिष्क /प्रमस्तिष्क                                        |      |   |
|    | (b) अनुमस्तिष्क / पश्च मस्तिष्क                                       |      |   |
|    | (c) मेडुलाa/ पश्च मस्तिष्क                                            | ½ x4 |   |
|    | (d) अग्र्मस्तिष्क                                                     |      | 4 |
| 39 | (i) इन्द्रधनुष (कोई अन्य)                                             | 1    |   |
|    | (ii) श्वेत प्रकाश का विक्षेपण होता है ।                               | 1    |   |
|    | (iii) (A)                                                             | I    |   |
|    | <ul> <li>वायुमंडल में जल की सूक्ष्म बूंदों का उपस्थित होना</li> </ul> | 1+1  |   |
|    | <ul> <li>सूर्य पर्यवेक्षक के पीछे होना चाहिए।.</li> </ul>             |      |   |
|    |                                                                       |      |   |
|    | 200                                                                   |      |   |
|    | अथवा                                                                  |      |   |
|    | (iii) (B)                                                             |      |   |
|    |                                                                       |      |   |
|    | Raindrop                                                              |      |   |
|    | Sunlight a a a b b Û C                                                | ½ x4 |   |
|    | (आरेख का ½ अंक और प्रत्येक a, b, c का ½ अंक)                          |      | 4 |



|     | अंकन योजना                                                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                       |
|     | पूरी तरह से गोपनीय                                                                                                                                                    |
|     | (केवल आंतरिक और प्रतिबंधित उपयोग के लिए)                                                                                                                              |
|     | माध्यमिक विद्यालय परीक्षा, 2025्                                                                                                                                      |
|     | विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/4/2                                                                                                                   |
|     | सामान्य निर्देश: -                                                                                                                                                    |
| 1   | आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण                                                                               |
|     | प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो                                                                                      |
|     | उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से                                                                               |
|     | बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों                                                                               |
|     | को ध्यान से पढ़ें और समझें।                                                                                                                                           |
| 2   | "मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और                                                                                    |
|     | कई अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक                                                                                         |
|     | होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर                                                                                 |
|     | असर पड़ सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में                                                                                         |
|     | प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न                                                                                         |
|     | नियमों के तहत कार्रवाई को आमंत्रित कर सकता है।                                                                                                                        |
| 3   | मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या                                                                                |
|     | किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन                                                                                           |
|     | किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर                                                                                     |
|     | आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें                                                                                  |
|     | उचित अंक दिए जा सकते हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय,                                                                              |
|     | कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो,                                                                                        |
|     | लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए।                                                                                              |
| 4   | अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति                                                                         |
|     | में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है                                                                            |
|     | और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए।                                                                                                     |
| 5   | प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर                                                                             |
|     | पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में                                                                                  |
|     | दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे                                                                                 |
|     | शून्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी                                                                                  |
|     | जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।                                                                                      |
| 6   | जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित                                                                             |
| 0   | किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (🗸) नहीं लगाएंगे जिससे यह आभास                                                                                        |
|     | होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो                                                                                               |
|     | मूल्यांकनकर्ता कर रहे हैं।                                                                                                                                            |
| 7   | मूल्याकनकता कर रहे हैं।<br>यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के                                              |
| 7   | विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में                                                                                   |
|     |                                                                                                                                                                       |
|     | लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.<br>यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा |
| 8   |                                                                                                                                                                       |
|     | लगाना चाहिए। इसका भी सख्ती से पालन किया जा सकता है.                                                                                                                   |
| 9   | यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का                                                                              |
|     | उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया                                                                                   |
| 4.5 | जाना चाहिए।                                                                                                                                                           |
| 10  | किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित                                                                                     |
| 1   | किया जाना चाहिए।                                                                                                                                                      |



बिंदु का एक पूर्ण स्कैन \_80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में 11 दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें। प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मूल्यांकन कार्य 12 करना होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन 25 उत्तर पुस्तिकाओं का मूल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)। सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न 13 करें:- किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना। • किसी उत्तर पर दिए गए अंकों का गलत योग। • उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग। • उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड देना। • शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग। • गलत योग। • शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं। • उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण। • उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।) • उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया। उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे 14 क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए। किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई 15 गई कुल त्रुटि से मूल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए। परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में 16 दिए गए दिशानिर्देशों से परिचित होना चाहिए। प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को 17 शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है। उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों

को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मुल्यांकन अंकन

योजना में दिए गए प्रत्येक उत्तर के लिए मुल्य बिंदओं के अनुसार सख्ती से किया जाए।

## माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

## कक्षाः x विज्ञान (विषय कोड-086) [ प्रश्न पत्र कोडः 31/4/2]

अधिकतम अंक: 80

| प्र.सं | अपेक्षित उत्तर / मूल्य बिंदु                                                        | अंक | कुल<br>अंक |
|--------|-------------------------------------------------------------------------------------|-----|------------|
|        | खण्ड - क                                                                            |     |            |
| 1      | (c)/ 40cm                                                                           | 1   | 1          |
| 2      | (c) /100%; 75%                                                                      | 1   | 1          |
| 3      | (c)/ बीज                                                                            | 1   | 1          |
| 4      | (d)/ग्लेशियर( हिमनदी ) का पिघलना                                                    | 1   | 1          |
| 5      | (b)/ आघातवर्ध्यता                                                                   | 1   | 1          |
| 6      | (a)/ कैल्शियम क्लोराइड                                                              | 1   | 1          |
| 7      | (d)/ प्रोपाइन                                                                       | 1   | 1          |
| 8      | (d)/ नर और मादा दोनों यूग्मक                                                        | 1   | 1          |
| 9      | (b)/ नाइट्रोजन                                                                      | 1   | 1          |
| 10     | (b)/ B और D                                                                         | 1   | 1          |
| 11     | (c)/ DDT                                                                            | 1   | 1          |
| 12     | (c)/पौधे> मनुष्य                                                                    | 1   | 1          |
| 13     | (c)/ कांच का स्लैब                                                                  | 1   | 1          |
| 14     | (d)/9                                                                               | 1   | 1          |
| 15     | (c)/ 60                                                                             | 1   | 1          |
| 16     | (a)/ 4400 Ω                                                                         | 1   | 1          |
| 17     | (d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                    | 1   | 1          |
| 18     | (d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                    | 1   | 1          |
| 19     | (d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                    | 1   | 1          |
| 20     | (a)/ अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), की सही<br>व्याख्या करता है । | 1   | 1          |



|    | खण्ड – ख                                                                                                                                                                                          |                 |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
| 21 | सुरक्षा उपाय :  • मैग्नीशियम रिबन को पकड़ने के लिए चिमटे का उपयोग किया जाना चाहिए।  • मैग्नीशियम रिबन को आंखों से दूर रखकर जलाएं। / आँखों की सुरक्षा के लिए उपुक्त चश्मा पहनना चाहिए।  प्रेक्षण : | ⅓ x2            |   |
|    | <ul> <li>चमकदार श्वेत लौ दिखाई देती है</li> <li>श्वेत चूर्ण या राख बनता है</li> </ul>                                                                                                             | ½ x2            | 2 |
| 22 | (A)  Incident ray  Incident ray  (1 अंक आरेख और ½ अंकित करने पर)  • विचलन कोण                                                                                                                     | 1½              |   |
|    | अथवा (B)  1. • द्विफोकसी लेंस • द्विफोकसी लेंस का ऊपरी भाग अवतल लेंस से बना होता है तथा निचला भाग उत्तल लेंस से बना होता है।                                                                      | 1/ <sub>2</sub> |   |
|    | distance ्रिConcave lens  near ्रिConvex lens  दूर और निकट दृष्टि को क्रमशः सुविधाजनक बनाने के लिए।                                                                                               | 1/2             |   |

|    | II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
|    | ा.<br>• उत्तल लेंस.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2                             |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |   |
|    | • उत्तल लेंस किनारों की अपेक्षा बीच से मोटा होता है 🖊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                               |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |   |
|    | • निकट दृष्टि को सुविधाजनक बनाने के लिए।<br>(i और ii में से कोई एक)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2                             | 2 |
| 23 | क्षुद्रांत्र के आंतरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं जिन्हें दीर्घरोम कहा<br>जाता है,ये अवशोषण का सतही क्षेत्रफल बढ़ा देते है, दीर्घरोम में रुधिर वाहिकाओ<br>की बहुतायत होती है जो भोजन को अवशोषित करके शरीर की प्रत्येक कोशिका<br>तक पहुचाते हैं।                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                               |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 2 |
| 24 | (i)<br>• सभी लम्बे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                             |   |
|    | • लम्बाई (लम्बा होना) एक प्रभावी लक्षण है                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                             |   |
|    | (ii) 1 : 1<br>(यदि मेंडल क्रॉस के माध्यम से समझाया जाए तो भी अंक प्रदान किए जाने चहिये)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                               | 2 |
| 25 | $(A) \qquad Mg : \begin{array}{c} \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \\ + & \stackrel{\times}{\underset{\times}{\times}} \\ \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \\ \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \end{array} \longrightarrow (Mg^2) \begin{bmatrix} \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \\ \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \\ \stackrel{\times}{\underset{\times}{\times}} \end{array} \end{bmatrix}_2$ | 1                               |   |
|    | <ul> <li>ऋणायन - क्लोराइड आयन / (Cl<sup>-</sup>)</li> <li>धनायन - मैग्नीशियम आयन / (Mg<sup>2+</sup>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
|    | <b>স্থান</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |   |
|    | अथवा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |   |
|    | (B)<br>(i) यदि जिंक, सल्फाइड अयस्क के रूप में हो तब:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                             |   |
|    | <ul> <li>भर्जन</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |   |
|    | $2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                             |   |
|    | - अपचयन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2                             |   |
|    | $ZnO + C \xrightarrow{Heat} Zn + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                             |   |

|    |                                                                                                                                                                                                                                                                  | ı                               |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
|    |                                                                                                                                                                                                                                                                  |                                 |   |
|    | (ii) यदि जिंक, कार्बोनेट अयस्क के रूप में हो तब:                                                                                                                                                                                                                 | 1/2                             |   |
|    | • निस्तापन ZnCO3 <u>Heat</u> ZnO + CO2                                                                                                                                                                                                                           | 1/2                             |   |
|    |                                                                                                                                                                                                                                                                  | 1/2                             |   |
|    | - अपचयन<br>Heat                                                                                                                                                                                                                                                  | 1/2                             |   |
|    | ZnO + C <sup>Heat</sup> → Zn + CO (i और ii में से एक)                                                                                                                                                                                                            |                                 | 2 |
| 26 | • विद्युत प्रयूज़ एक सुरक्षा उपकरण है जिसका उपयोग विद्युत परिपथ में लघु<br>पतन और अतिभारण के कारण विद्युत उपकरण (साधित्र) को होने वाली<br>किसी भी क्षिति को रोकने के लिए किया जाता है।                                                                           | 1                               |   |
|    | <ul> <li>यदि निर्धारित अनुमतांक के प्रयूज़ तार को अधिक अनुमतांक वाले प्रयूज़ तार से<br/>प्रतिस्थापित कर दिया जाए, तो प्रयूज़ तार लघु पतन एवं अतिभारण की स्थिति</li> </ul>                                                                                        |                                 |   |
|    | में अनावश्यक उच्च धारा के प्रवाह के होने पर भी पिघलेगा नहीं और विद्युत<br>उपकरण (साधित्र) क्षतिग्रस्त हो जाएगा।                                                                                                                                                  | 1                               | 2 |
|    | खण्ड - ग                                                                                                                                                                                                                                                         |                                 |   |
| 27 | <ul> <li>अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जिटल कार्बनिक पदार्थों को सरल<br/>अकार्बनिक पदार्थों में बदल देते हैं।</li> <li>उदाहरण: बैक्टीरिया (जीवाणु) और कवक</li> <li>अपघटन से बने सरल पदार्थ मिट्टी (मृदा) में चले जाते हैं और पौधों द्वारा पुनः</li> </ul> | 1 1/2+1/2                       |   |
|    | उपयोग में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का संतुलन बना रहता<br>है (प्राकृतिक पुन: पूर्ति )।                                                                                                                                                           | 1                               | 3 |
| 28 | (i) धातु D<br>(ii) कॉपर सल्फेट का नीला रंग गायब हो जाएगा                                                                                                                                                                                                         | 1x3                             |   |
|    | (iii) B > C > A > D                                                                                                                                                                                                                                              |                                 | 3 |
| 29 | (i)<br>A: फुफ्फुसीय धमनी<br>B: फुफ्फुसीय शिरा<br>C: महाधमनी<br>D: महाशिरा                                                                                                                                                                                        | ½ x4                            |   |
|    | <ul> <li>(ii)</li> <li>A के कार्य : विऑक्सीजिनत रुधिर को हृदय से फेफड़ों तक ले जाता है</li> <li>C के कार्य: ऑक्सीजिनत रुधिर को हृदय से शरीर के सभी भागों तक पहुँचाना ।</li> </ul>                                                                                | ½ x2                            | 3 |
| 30 | (i)                                                                                                                                                                                                                                                              | 1,                              |   |
|    | <ul> <li>A - विद्युतरोधी</li> <li>B – मिश्रात्</li> </ul>                                                                                                                                                                                                        | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
| ļ  | • p = idaliЙ                                                                                                                                                                                                                                                     | 72                              | l |

|    | <del>-</del>                                                                                                                                              |     |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|    |                                                                                                                                                           | 1/2 |   |
|    | (ii)<br>• A: प्लास्टिक – विद्युत इस्तरी का हैंडल।                                                                                                         | 1/2 |   |
|    |                                                                                                                                                           | 1/2 |   |
|    | में उपयोग किया जाता है।                                                                                                                                   |     |   |
|    | • C: तांबा - बिजली के तार. 🖊                                                                                                                              | 1/2 |   |
|    | <ul> <li>A: विद्युत स्टोव: रबर के पैर।</li> </ul>                                                                                                         |     |   |
|    | <ul> <li>B: नाइक्रोम - विद्युत स्टोव में हीटिंग एलिमेंट / तापन तत्व के रूप में</li> </ul>                                                                 |     |   |
|    | उपयोग किया जाता है।                                                                                                                                       |     |   |
|    | • C: तांबा - बिजली के तार।                                                                                                                                |     | _ |
|    | (किसी विद्युत साधित्र में इनके उपयोग का कोई अन्य उदाहरण)                                                                                                  |     | 3 |
| 31 | <ul> <li>बिम्ब को C और F के बीच रखा जाना चिहए / दर्पण से 18cm और 36 cm<br/>के बीच</li> </ul>                                                              | 1   |   |
|    | • दर्पण सूत्र $=\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$                                                                                                      | 1/2 |   |
|    | • आवर्धन m = - 2                                                                                                                                          |     |   |
|    | f = - 18 cm                                                                                                                                               | 1   |   |
|    | $m = -\frac{v}{u} = -2$                                                                                                                                   |     |   |
|    | v = 2u                                                                                                                                                    |     |   |
|    | $\bullet \qquad \frac{1}{2u} + \frac{1}{u} = \frac{1}{-18  cm}$                                                                                           |     |   |
|    | 3 1                                                                                                                                                       |     |   |
|    | $\therefore \frac{3}{2u} = \frac{1}{-18  cm}$                                                                                                             | 1/2 | 3 |
|    | u = −27 cm                                                                                                                                                | 72  |   |
| 32 | (A)                                                                                                                                                       |     |   |
|    | <ul> <li>किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के<br/>परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को</li> </ul> | 1/2 |   |
|    | संतुष्ट करने के लिए                                                                                                                                       | 72  |   |
|    |                                                                                                                                                           | 1/2 |   |
|    | • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा                                                                                        | 1   |   |
|    | सकता है और न ही विनाश ।                                                                                                                                   |     |   |
|    | $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                             | 1   |   |
|    | अथवा                                                                                                                                                      |     |   |
|    | (B)                                                                                                                                                       |     |   |
|    |                                                                                                                                                           | 1   |   |
| 1  | जामाप्रया परहराता है।                                                                                                                                     |     |   |



| उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है।     Na₂SO₄(aq)+ BaCl₂(aq) → BaSO₄(s)+ 2NaCl(aq) ppt     (कोई अन्य उदाहरण)      विद्युत आवेग की सीमाएँ:     वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं।     एक बार जब किसी कोशिका में विद्युत आवेग जित होता है तथा संचारित होता है, तो पुनः नया आवेग जित करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है।     (कोई अन्य सीमा)     रासायिनक संचार में संकेत (रासायिनक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।      उपण्ड - घ    अपण्ड - |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (कोई अन्य उदाहरण)  33  विद्युत आवेग की सीमाएँ:  • वे कवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।  • एक बार जब किसी कोशिका में विद्युत आवेग जित होता है तथा संचारित होता है, तो पुनः नया आवेग जित करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है ।  (कोई अन्य सीमा)  • रासायिनक संचार में संकेत (रासायिनक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  34  (A) (i)  • संरचनात्मक समावयव : समान आणिवक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  • सम्म स्म स्म स्म स्म स्म स्म स्म स्म स्                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| विद्युत आवेग की सीमाएँ:   वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं     एक बार जब किसी कोशिका में विद्युत आवेग जित होता है तथा संचारित होता है, तो पुन: नया आवेग जित करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है     एकोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है     एकोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है     एकोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं     3   1     अ   अ   अ   अ     अ   अ   अ   अ   अ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ppt                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।  • एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा संचारित होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है ।  • रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  • सम स स स स स स स स स स स स स स स स स स                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (काइ अन्य उदाहरण)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।  • एक बार जब किसी कोशिका में विद्युत आवेग जित होता है तथा संचारित होता है, तो पुनः नया आवेग जित करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है ।  (कोई अन्य सीमा)  • रासायिनक संचार में संकेत (रासायिनक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  34  (A) (i)  • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  • सम स स स स स स स स स स स स स स स स स स                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है । (कोई अन्य सीमा)  • रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  *** खण्ड - घ**  ***  ***  ***  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।      खण्ड - घ      संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक      H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | होता है, तो पुनः नया आवेग जनित करने तथा उसे संचारित करने के लिए<br>कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है । | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| खण्ड - घ  (A) (i)  • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  • H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34       (A) (i)       • संरचनात्मक समावयव : समान आणिवक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक       1         •       H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | प्रदान करते हैं।                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | खण्ड – ਬ                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| भि भि भे भे भे भे भे भे भ भ भ भ भ भ भ भ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| है / दो भिन्न कंकाली संरचना या संरचनाएँ संभव नहीं हैं।<br>(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H H H H H H                                                                                                                          | 1/2 +1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| च प्राचन ठाइणावताइठ, जत , जञ्चा १५ प्रचमरा उत्पन्न हात हा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>कार्बन डाइऑक्साइड, जल , ऊष्मा एवं प्रकाश उत्पन्न होते हैं।</li> </ul>                                                       | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>रासायनिक समीकरण :</li> <li>2C₄H₁₀ +13 O₂ → 8CO₂ + 10H₂O +ऊष्मा एवं प्रकाश .</li> <li>(संतुलन को नजरअंदाज करें )</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2C₄H <sub>10</sub> +13 O <sub>2</sub> →→ 8CO <sub>2</sub> + 10H <sub>2</sub> O +ऊष्मा एवं प्रकाश .                                   | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • ब्यूटेन नीली (स्वच्छ) ज्वाला उत्पन्न करता है $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • ब्यूटाइन घुए वाला पाला ज्वाला क उत्पन्न करता ह / कज्जला ज्वाला - 72<br>अथवा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | , <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      | मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है।  • Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt (कोई अन्य उदाहरण)  विद्युत आवेग की सीमाएँ:  • वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं।  • एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा संचारित होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है।  • रासायिनक संचार में संकेत (रासायिनक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  • खण्ड - घ  (A) (i) • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक • म म म म म म म म म म म म म म म म म म म | मिलाया जाता है तो बेरियम सस्फेट का सफेद अवक्षेप बनता है।  • Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) PP¹  (कोई अन्य उदाहरण)  विद्युत आवेग की सीमाएँ:  • वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।  • एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा संचारित होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है । (कोई अन्य सीमा)  • रासायिनक संचार में संकेत (रासायिनक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।  ***खण्ड - घ**  (A) (i)  • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक  **  **  **  **  **  **  **  **  ** |

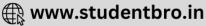
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 1 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---|
|    | <ul> <li>(B) (i)</li> <li>कार्बन चार इलेक्ट्रॉन प्राप्त कर C<sup>4-</sup> ऋणायन बना सकता है लेकिन छ: प्रोटॉन वाले नाभिक के लिए दस इलेक्ट्रॉन अर्थात चार अतिरिक्त इलेक्ट्रॉन धारण करना मुश्किल होगा।</li> <li>कार्बन चार इलेक्ट्रॉन खो कर C<sup>4+</sup> धनायन बना सकता है, लेकिन चार इलेक्ट्रॉनों को खो कर छ: प्रोटॉन वाले नाभिक में केवल दो इलेक्ट्रोनों का कार्बन धनायन बनाने के लिए अत्यधिक ऊर्जा की आवश्यकता होगी।</li> </ul> | 1                              |   |
|    | (ii) एक परमाणु या परमाणुओं का समूह / विषम परमाणु जो किसी कार्बनिक-यौगिकों के रासायनिक/ विशिष्ट गुणों को निर्धारित करता है, प्रकार्यात्मक समूह कहलाता है।                                                                                                                                                                                                                                                                          | 1                              |   |
|    | यौगिक       संरचनात्मक सूत्र       प्रकार्यात्मक समूह         (a) एथेनॉल       H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                              | ½x4                            |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 5 |
| 35 | (A) (i)                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |   |
|    | सही पैटर्न<br>सही दिशा                                                                                                                                                                                                                                                                                                                                                                                                            | 1                              |   |
|    | <ul> <li>(ii) (a)</li> <li>• लाल तार : विधुन्मय तार</li> <li>• काला तार : उदासीन तार</li> <li>• हरा तार : भुसंपर्क तार</li> </ul>                                                                                                                                                                                                                                                                                                 | <sup>1</sup> / <sub>2</sub> x3 |   |
|    | (b) 220 V (c) इसका उपयोग सुरक्षा उपाय के रूप में किया जाता है। यह सुनिश्चित करता है कि साधित्र के धातु आवरण में यदि कोई विद्युत धारा का क्षरण हो तो इसका विभव पृथ्वी के विभव के बराबर बना रहे और उपयोगकर्ता को गंभीर झटका न लगे।                                                                                                                                                                                                  | 1/2                            |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                              |   |



|    | अथवा                                                                                                                                                                                                                                                                                                        |     |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|    | (B)                                                                                                                                                                                                                                                                                                         |     |   |
|    | (i) (a) चालक AB विस्थापित हो जाता है।                                                                                                                                                                                                                                                                       | 1   |   |
|    | b)                                                                                                                                                                                                                                                                                                          |     |   |
|    | - प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर।                                                                                                                                                                                                                                                               | 1+1 |   |
|    | - चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर।                                                                                                                                                                                                                                                                    |     |   |
|    | (ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।                                                                                                                                                                                                                                     | 1   |   |
|    | (iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये<br>तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और<br>मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो<br>अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की ओर संकेत<br>करेगा। | 1   | 5 |
| 36 | <ul> <li>(A) (i)</li> <li>पुनरूदभवन (पुनर्जनन): अपने शरीर के अंगों से नए जीव को जन्म देने की क्षमता / यदि किसी कारणवश जीव क्षत-विक्षत हो जाए अथवा कई टुकड़ों में काट दिया जाए, तो इसके अनेक टुकड़े वृधि कर एक नए जीव में विकसित हो जाते है।</li> </ul>                                                      | 1   |   |
|    | <ul> <li>पुनर्जनन दर्शाने वाले जीव: प्लैनेरिया /हाइड्रा</li> </ul>                                                                                                                                                                                                                                          | 1/2 |   |
|    | जीव में पुनर्जनन नहीं दिखता: स्पाइरोगाइरा  (कोई अन्य उदाहरण)                                                                                                                                                                                                                                                | 1/2 |   |
|    | <ul> <li>क्योंकि इसमें विशिष्ट कोशिकाएं नहीं होतीं जो नई कोशिका प्रकारों और<br/>ऊतकों का निर्माण करने के लिए प्रवर्धित होती हैं।</li> </ul>                                                                                                                                                                 | 1   |   |
|    | (ii)<br>• स्पाइरोगाइरा                                                                                                                                                                                                                                                                                      | 1/2 |   |
|    | • ये खंडन विधि द्वारा जनन करते है ।                                                                                                                                                                                                                                                                         | 1/2 |   |
|    | <ul> <li>यह विकसित होकर छोटे छोटे टुकड़ों में खंडित हो जाता है यह टुकडे अथवा<br/>खंड वृधि कर ने जीव (व्यष्टि) में विकसित हो जाते हैं ।</li> </ul>                                                                                                                                                           | 1   |   |
|    | अथवा                                                                                                                                                                                                                                                                                                        |     |   |
|    | (B)(i)                                                                                                                                                                                                                                                                                                      |     |   |
|    | (a) शुक्रवाहिनी<br>(b) वृषण                                                                                                                                                                                                                                                                                 | ½x4 |   |
|    | (c) प्रोस्ट्रेट ग्रंथि / शुक्राशय                                                                                                                                                                                                                                                                           |     |   |

| (d) वृषण कोश                                                                                                                                                                                             |                             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|
| (ii) शुक्राणु में आनुवांशिक पदार्थ , गति के लिए पूंछ , आकार में सूध                                                                                                                                      | भ्म होते हैं ।<br>(कोई दो ) |   |
| <ul> <li>(iii)</li> <li>पुरुष की शुक्रवाहिकाओं और स्त्री की अंडवाहिनी अथवा पे<br/>निलका को अवरुद्ध कर निषेचन को रोका जाता है ।</li> <li>असावधानीपूर्वक की गई शल्यक्रिया से संक्रमण हो सकता है</li> </ul> | ½x2                         | 5 |
| खण्ड - ड                                                                                                                                                                                                 | ·                           |   |
| 37 (i) इन्द्रधनुष (कोई अन्य) (ii) श्वेत प्रकाश का विक्षेपण होता है। (iii) (A)                                                                                                                            | 1 1                         |   |
| <ul> <li>वायुमंडल में जल की सूक्ष्म बूंदों का उपस्थित होना</li> <li>सूर्य पर्यवेक्षक के पीछे होना चाहिए।.</li> </ul>                                                                                     | 1+1                         |   |
| <b>अथवा</b><br>(iii) (B)                                                                                                                                                                                 |                             |   |
| Suntight  (आरेख का ½ अंक और प्रत्येक a, b, c का                                                                                                                                                          | ½ x4<br>½ अंक)              | 4 |
| <b>ं</b> नान नोजनोपिक शास (॥८) और मोनिमम नान नोनमान न (॥८०)                                                                                                                                              | ,                           |   |
| (i) हाइड्राक्सारिक अम्स /ACI और साडियम हाइड्राक्साइड/ NaOi<br>(ii)<br>- उदासीन<br>- क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है।<br>(iii) (A)                                                         | 1/2 1/2                     |   |
| <ul> <li>सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजि<br/>अपघटन) होकर उत्पन्न करता है:</li> <li>कैथोड के पास NaOH विलयन</li> </ul>                                                                      | त (विद्युत                  |   |
| <ul> <li>एनोड पर Cl₂</li> <li>कैथोड पर H₂</li> <li>अथवा</li> </ul>                                                                                                                                       | ½ x3                        |   |

|    | (iii)(B)                                                                   |                   |   |
|----|----------------------------------------------------------------------------|-------------------|---|
|    | सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त किया |                   |   |
|    | जाता है:                                                                   |                   |   |
|    | $-NaCl + H2O + CO2 + NH3 \longrightarrow NH4Cl + NaHCO3$                   |                   |   |
|    | $-2NaHCO_3 \xrightarrow{\text{Heat}} Na_2CO_3 + H_2O + CO_2$               | ½ x 4             |   |
|    | - सोडियम कार्बोनेट के पुनः क्रिस्टलीकरण से धोने का सोडा प्राप्त होता है।   |                   |   |
|    | $-Na_2CO_3 + 10H_2O \longrightarrow Na_2CO_3 .10H_2O$                      |                   | 4 |
| 39 | <b>(i)</b> प्रतिवर्ती क्रिया.:                                             | 1/2               |   |
|    | • पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई क्रिया ।      | 1/2               |   |
|    | (ii)                                                                       |                   |   |
|    | (a) प्रेरक तंत्रिका – मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है    | 1/2               |   |
|    |                                                                            |                   |   |
|    | (b) प्रतिसारण तंत्रिका – संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।  | 1/2               |   |
|    | (iii)                                                                      |                   |   |
|    | (A) - केन्द्रीय तंत्रिका तंत्र.                                            | ½ x4              |   |
|    | संघटक: मस्तिष्क; मेरुरज्जु ,                                               | 72 % .            |   |
|    | -परिधीय तंत्रिका तंत्र                                                     |                   |   |
|    | संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.                                   |                   |   |
|    |                                                                            |                   |   |
|    | अथवा                                                                       |                   |   |
|    | (iii)(B)                                                                   |                   |   |
|    | (a) अग्र्मस्तिष्क /प्रमस्तिष्क                                             |                   |   |
|    | (b) अनुमस्तिष्क / पश्च मस्तिष्क                                            | ½ x4              |   |
|    | (c) मेडुलाa/ पश्च मस्तिष्क                                                 | 72 X <del>4</del> |   |
|    | (d) अग्र्मस्तिष्क                                                          |                   | 4 |




## अंकन योजना पूरी तरह से गोपनीय

(केवल आंतरिक और प्रतिबंधित उपयोग के लिए) माध्यमिक विद्यालय परीक्षा, 2025 विषय का नाम: विज्ञान विषय कोड: 086 पेपर कोड: 31/4/3 सामान्य निर्देश: -आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मुल्यांकन में मुल्यांकन सबसे महत्वपूर्ण प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढें और समझें। "मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन 2 और कई अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड़ सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित कर सकता है। मुल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय, कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए। अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए। प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर 5 पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शुन्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है। जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (√) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मुल्यांकनकर्ता कर रहे हैं। 7 लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.

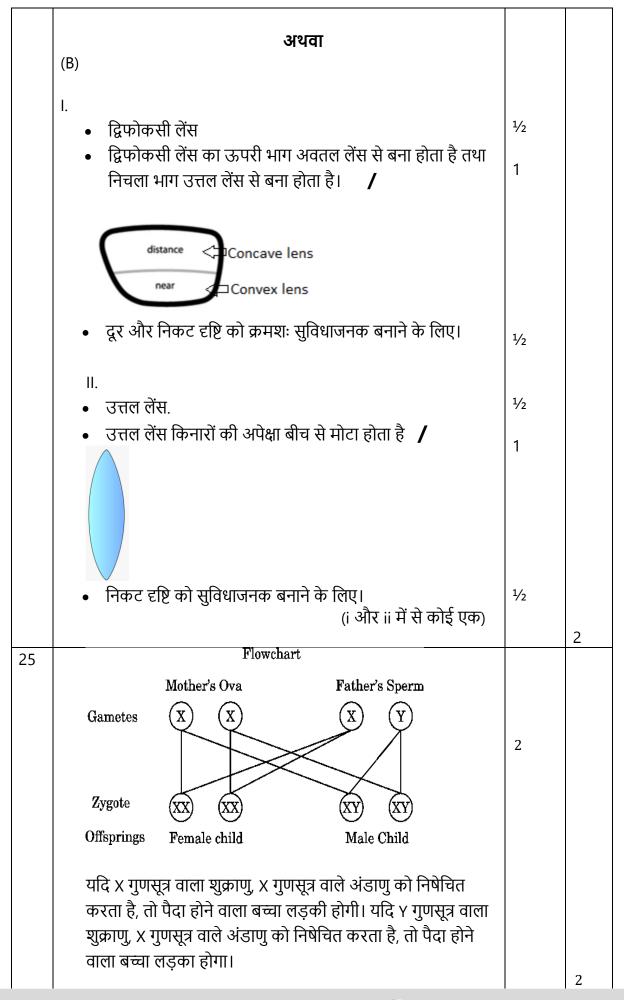
- यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में
- यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना चाहिए। इसका भी सख्ती से पालन किया जा सकता है.
- यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए।
- किसी त्रृटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया जाना चाहिए।





- बिंदु का एक पूर्ण स्कैन 80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें।
- प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मुल्यांकन 12 कार्य करना होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन २५ उत्तर पुस्तिकाओं का मूल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)।
- सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न 13 करें:- किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना।
  - किसी उत्तर पर दिए गए अंकों का गलत योग।
  - उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग।
  - उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड़ देना।
  - शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग।
  - गलत योग।
  - शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं।
  - उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण।
  - उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।)
  - उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया।
- उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए।
- किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई 15 गई कुल त्रृटि से मुल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए।
- परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" 16 में दिए गए दिशानिर्देशों से परिचित होना चाहिए।
- प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को 17 शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया हैं और अंकों और शब्दों में लिखा गया है।
- उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की 18 फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

## माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना


कक्षा: x विज्ञान (विषय कोड-086) [ प्रश्न पत्र कोड: 31/4/3]

अधिकतम अंक: 80

| प्र.सं | अपेक्षित उत्तर / मूल्य बिंदु                                                                            | अधिकतम | कुल<br>अंक |
|--------|---------------------------------------------------------------------------------------------------------|--------|------------|
|        | खण्ड - क                                                                                                | 1      |            |
| 1      | (c)/ DDT                                                                                                | 1      | 1          |
| 2      | (c)/ पौधे> मनुष्य                                                                                       | 1      | 1          |
| 3      | (b)/ मैग्नीशियम                                                                                         | 1      | 1          |
| 4      | (c)/ कांच का स्लैब                                                                                      | 1      | 1          |
| 5      | (d)/ 9                                                                                                  | 1      | 1          |
| 6      | (d)/ ग्लेशियर (हिमनदी) का पिघलना                                                                        | 1      | 1          |
| 7      | (a)/ कैल्शियम क्लोराइड                                                                                  | 1      | 1          |
| 8      | (d)/ प्रोपाइन                                                                                           | 1      | 1          |
| 9      | (b)/ नाइट्रोजन                                                                                          | 1      | 1          |
| 10     | (c)/ 60                                                                                                 | 1      | 1          |
| 11     | (a)/ 4400 Ω                                                                                             | 1      | 1          |
| 12     | (b)/ B और D                                                                                             | 1      | 1          |
| 13     | (c)/ बीज                                                                                                | 1      | 1          |
| 14     | (c)/ 100%; 75%                                                                                          | 1      | 1          |
| 15     | (a)/ परागकोश                                                                                            | 1      | 1          |
| 16     | (c)/ 40cm                                                                                               | 1      | 1          |
| 17     | (a) / अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R),<br>अभिकथन (A) की सही व्याख्या करता है ।         | 1      | 1          |
| 18     | (d) / अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                                       | 1      | 1          |
| 19     | (d) अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।                                                         | 1      | 1          |
| 20     | (b) / अभिकथन (A) और कारण (R) दोनों सही हैं परन्तु कारण (R)<br>अभिकथन (A) की सही व्याख्या नहीं करता है । | 1      | 1          |



|    | <b>खण्ड – ख</b>                                                                                                                                                                      |          |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| 21 | <ul> <li>सिल्वर ब्रोमाइड (AgBr) / सिल्वर क्लोराइड (AgCl)</li> <li>उष्माशोषी अभिक्रिया</li> </ul>                                                                                     | 1 1/2    |   |
|    | पुष्टि : ऊर्जा की आवश्यकता होती है / अभिकारकों के वियोजन के लिए<br>सूर्य के प्रकाश की आवश्यकता होती है।                                                                              | 1/2      | 2 |
| 22 | (A) $\bullet  Ca  Ca^{2+} + 2e^{-}$                                                                                                                                                  | 1/2      |   |
|    | • $CI + e^{-} \longrightarrow CI^{-}$                                                                                                                                                | 1/2      |   |
|    | • Ca: $\stackrel{\times \times}{+} \stackrel{\times \times}{\times} \times \times$ | 1        |   |
|    |                                                                                                                                                                                      |          |   |
|    | <ul> <li>(B)</li> <li>उभयधर्मी ऑक्साइड अम्ल तथा क्षारक दोनों से अभिक्रिया करके लवण<br/>तथा जल प्रदान करते है ।</li> <li>अभिक्रियाएँ :</li> </ul>                                     | 1        |   |
|    | $Al_2O_3 + 6HCI \rightarrow 2AlCl_3 + 3H_2O$                                                                                                                                         | 1/2      |   |
|    |                                                                                                                                                                                      | 1/2      | 2 |
| 23 | • जाइलम और फ्लोएम                                                                                                                                                                    | 1/2 +1/2 |   |
|    | <ul> <li>जाइलम – मृदा से प्राप्त जल और खनिज लवणों को पौधे के<br/>विभिन्न भागों तक पहुँचाता है</li> </ul>                                                                             | 1/2      |   |
|    | <ul> <li>फ्लोएम –भोजन का पत्तियों से पादपों के अन्य भागों में परिवहन /<br/>विलेय उत्पादों का स्थानांतरण।</li> </ul>                                                                  | 1/2      | 2 |
| 24 | (A)                                                                                                                                                                                  |          |   |
|    | Incident ray  (1 अंक आरेख और ½ अंकित करने पर)                                                                                                                                        | 11/2     |   |
|    | • विचलन कोण                                                                                                                                                                          | 1/2      |   |



|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı   |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 26 | Variable reststance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |   |
|    | • दक्षिण – हस्त अंगुष्ठ नियम।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | 2 |
|    | खण्ड - ग                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •   | • |
| 27 | <ul> <li>बिम्ब को F और P के बीच रखना चाहिए / दर्पण से 18 सेमी से<br/>कम दूरी पर</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |   |
|    | • दर्पण सूत्र = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 |   |
|    | आवर्धन m = +2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = +2$ $v = -2u$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |   |
|    | $\frac{1}{-2 u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\frac{1}{2u} = \frac{1}{-18 \text{ cm}}$                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2 |   |
|    | u = -9cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72  | 3 |
| 28 | <ul> <li>विद्युत अपघटनी</li> <li>इस प्रक्रम में अशुद्ध धातु को ऐनोड तथा शुद्ध धातु की पतली परत को कैथोड बनाया जाता है। धातु के लवण विलयन का उपयोग विद्युत अपघट्य के रूप में होता है। विद्युत अपघट्य से जब विद्युत धारा प्रवाहित की जाती है तब ऐनोड पर स्थित अशुद्ध धातु विद्युत अपघट्य में घुल जाती है। इतनी ही मात्रा में शुद्ध धातु विद्युत अपघट्य से कैथोड पर निक्षेपित हो जाती है। विलेय अशुद्धियाँ विलयन में चली जाती हैं तथा अविलेय अशुद्धियाँ ऐनोड तली पर निक्षेपित हो जाती है जिसे ऐनोड पंक कहते हैं।</li> </ul> | 2   | , |
|    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |

|                                                                                                                                                                             |     | 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Cathode  Acidified copper sulphate solution  Tank Impurities  (यदि चित्रात्मक रूप से समझाया जाए तो भी अंक प्रदान किए जाएँ )                                                 |     | 3 |
| <ul> <li>ग्लूकोज के विखंडन से पाइरूवेट या पाइरुविक अम्ल का बनना ।</li> </ul>                                                                                                | 1/2 |   |
| कोशिका के कोशिकाद्र्व्य में होता है ।  (i) ऑक्सीजन की उपस्थिति में :     कोशिका ऑक्सीजन की     उपस्थिति  ग्लूकोज द्वय में पायरुवेट उपस्थिति  कार्बन डाइऑक्साइड + जल + ऊर्जा | 1/2 |   |
| (ii) ऑक्सीजन की कमी के कारण :  कोशिका ऑक्सीजन  ग्लूकोज़                                                                                                                     | 1   | 3 |
| 30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक                                                                                                            |     |   |
| तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण<br>के नियम को संतुष्ट करने के लिए                                                                              | 1/2 |   |
| • द्रव्यमान संरक्षण का नियम                                                                                                                                                 | 1/2 |   |
| <ul> <li>किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण<br/>किया जा सकता है और न ही विनाश ।</li> </ul>                                                            | 1   |   |
| $\bullet  3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$                                                                                                               | 1   |   |
| अथवा                                                                                                                                                                        |     |   |
| <ul> <li>(B)</li> <li>कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है,</li> <li>अवक्षेपण अभिक्रिया कहलाती है।</li> </ul>                                             | 1   |   |
| उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड<br>विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप<br>बनता है।                                                   | 1   |   |
| • Na <sub>2</sub> SO <sub>4</sub> (aq)+ BaCl <sub>2</sub> (aq) $\longrightarrow$ BaSO <sub>4</sub> (s)+ 2NaCl(aq) ppt                                                       | 1   |   |
| (कोई अन्य उदाहरण)                                                                                                                                                           |     | 3 |

| 31 | अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जटिल कार्बनिक पदार्थीं                                                | 1                           |   |
|----|------------------------------------------------------------------------------------------------------------|-----------------------------|---|
|    | को सरल अकार्बनिक पदार्थीं में बदल देते हैं।                                                                |                             |   |
|    | • उदाहरण: बैक्टीरिया(जीवाणु) और कवक                                                                        | $\frac{1}{2} + \frac{1}{2}$ |   |
|    | • अपघटन से बने सरल पदार्थ मिट्टी(मृदा) में चले जाते हैं और पौधों                                           | 1                           |   |
|    | द्वारा पुनः उपयोग में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का                                         | !                           | 3 |
| 32 | संतुलन बना रहता है (प्राकृतिक पुन: पूर्ति )।                                                               | 1                           | 3 |
| 32 | <ul> <li>एकांक आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किया</li> <li>गया कार्य / (V=W/Q)</li> </ul> | '                           |   |
|    | • वोल्ट (V)                                                                                                | 1/2                         |   |
|    | <ul> <li>किसी विद्युत धारावाही चालक के दो बिन्दुओं के बीच एक कूलाम</li> </ul>                              |                             |   |
|    | आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में 1जूल कार्य किया                                             | 1                           |   |
|    | जाता है                                                                                                    |                             |   |
|    | • 1 वोल्ट = 1 जूल /1 कूलाम or 1V=1 J C <sup>-1</sup>                                                       | 1/2                         |   |
|    |                                                                                                            |                             | 3 |
| 33 | विद्युत आवेग की सीमाएँ:                                                                                    |                             |   |
|    | • वे केवल उन कोशिकाओं तक पहुंचते हैं जो तंत्रिका ऊतक से जुड़ी                                              |                             |   |
|    | होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।                                                           | 1                           |   |
|    | • एक बार जब किसी कोशिका में विद्युत आवेग जनित होता है तथा                                                  |                             |   |
|    | संचारित होता है, तो पुनः नया आवेग जनित करने तथा उसे संचारित                                                | 1                           |   |
|    | करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में                                                |                             |   |
|    | कुछ समय लेती है ।                                                                                          |                             |   |
|    | (कोई अन्य सीमा)                                                                                            |                             |   |
|    | • रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से                                                 | 1                           |   |
|    | शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और                                                     | '                           |   |
|    | वांछित परिवर्तन प्रदान करते हैं।                                                                           |                             | 3 |
| 34 | खण्ड – घ                                                                                                   |                             |   |
| 34 | (A)<br>(i)                                                                                                 |                             |   |
|    |                                                                                                            |                             |   |
|    |                                                                                                            |                             |   |
|    | (A ) YY (A )                                                                                               |                             |   |
|    |                                                                                                            |                             |   |
|    | सही पैटर्न                                                                                                 | 1                           |   |
|    | ਜ਼ਰੀ ਰਿਹਾ                                                                                                  | 1                           |   |
|    | सही दिशा<br>(ii) (a)                                                                                       | 1                           |   |
|    | • लाल तार : विधुन्मय तार                                                                                   |                             |   |
|    | • काला तार : उदासीन तार                                                                                    |                             |   |
|    | • हरा तार : भुसंपर्क तार                                                                                   | ½x3                         |   |
|    |                                                                                                            |                             | I |

|    | (b) 220 V                                                                                                                                         | 1/2      |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | (c) इसका उपयोग सुरक्षा उपाय के रूप में किया जाता है। यह सुनिश्चित करता<br>है कि साधित्र के धातु आवरण में यदि कोई विद्युत धारा का क्षरण हो तो इसका | 1        |   |
|    | विभव पृथ्वी के विभव के बराबर बना रहे और उपयोगकर्ता को गंभीर झटका न                                                                                |          |   |
|    | लगे।                                                                                                                                              |          |   |
|    | अथवा                                                                                                                                              |          |   |
|    | (B)                                                                                                                                               |          |   |
|    | (i) (a) चालक AB विस्थापित हो जाता है।                                                                                                             | 1        |   |
|    | b)                                                                                                                                                |          |   |
|    | - प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर।<br>- चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर।                                                         | 1+1      |   |
|    | (ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।                                                                           | 1        |   |
|    |                                                                                                                                                   |          |   |
|    | (iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए                                                                              |          |   |
|    | कि ये तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की<br>दिशा और मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर            |          |   |
|    | संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर                                                                                         | 1        |   |
|    | आरोपित बल की ओर संकेत करेगा ।                                                                                                                     | Ĺ        | 5 |
| 35 | (A)                                                                                                                                               |          |   |
|    | A – वर्तिकाग्र ; B – परागकोश                                                                                                                      | 1/2+ 1/2 |   |
|    | • परागकण से एक पराग नलिका विकसित होती है जो नर यूग्मक को                                                                                          |          |   |
|    | को अंडाशय में स्थित मादा – यूग्मक (अंड कोशिका) तक ले जाती है.                                                                                     |          |   |
|    | • जनन कोशिकाओं के संलयन/निषेचन से युग्मनज बनता है ।                                                                                               |          |   |
|    | • युग्मनज विभाजित होकर बीजांड में भ्रूण बनाता है। बीजाण्ड                                                                                         | 1x4      |   |
|    | विकसित होकर बीज में परिवर्तित हो जाता है।                                                                                                         |          |   |
|    | • अंडाशय तीव्रता से वृधि करता है तथा परिपक्व होकर फल बनाता                                                                                        |          |   |
|    | है। पंखुड़ियाँ, बाह्यदल, पुंकेसर, वर्तिका एवं वर्तिकाग्र प्राय: मुरझा कर                                                                          |          |   |
|    | गिर जाते हैं ।                                                                                                                                    |          |   |
|    | अथवा                                                                                                                                              |          |   |
|    | (B)                                                                                                                                               |          |   |
|    | निषेचन के बाद परिवर्तन:                                                                                                                           |          |   |
|    | <ul> <li>निषेचन के परिणामस्वरूप युग्मनज का निर्माण होता है।</li> </ul>                                                                            |          |   |
|    | • युग्मनज विभाजित होकर भ्रूण बनाता है जो गर्भाशय की भित्ति में                                                                                    |          |   |
|    | स्थापित हो जाता है।                                                                                                                               |          |   |
|    | <ul> <li>भ्रूण लगातार वृधि करता है और प्लेसेंटा के माध्यम से पोषण प्राप्त</li> </ul>                                                              | 1x3      |   |
|    | करता रहता है                                                                                                                                      |          |   |
|    |                                                                                                                                                   |          |   |
|    | प्लैसेंटा की भूमिका –                                                                                                                             |          |   |
|    | - माँ के रुधिर से भ्रूण को ऑक्सीजन और ग्लूकोज प्रदान करना                                                                                         |          |   |
| I  | I                                                                                                                                                 | I        | ı |



|    |                                                                                                                                                                         | 1         |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|    | - विकसित होते भ्रूण द्वारा उत्पन्न अपशिष्ट पदार्थों का निपटान                                                                                                           | 1         |   |
|    | जब अंड का निषेचिन नहीं होता है : • गर्भाशय की पर्त् धीरे-धीरे टूटकर योनि मार्ग से रुधिर एवं म्यूकस के रूप में निष्कासित होती है / ऋतुस्त्राव अथवा रजोधर्म धर्म<br>होगा। | 1         | 5 |
| 36 | (A)  H H       - यौगिक A: एथेनॉल/इथाइल ऐल्कोहल; H - C - C - OH / CH₃CH₂OH       H H                                                                                     | 1/2 ; 1/2 |   |
|    | H H                                                                                                                                                                     | 1/2; 1/2  |   |
|    | H H<br>   <br>H − C − C − H<br>   <br>• यौगिक C: एथेन ; H H / C <sub>2</sub> H <sub>6</sub>                                                                             | 1/2; 1/2  |   |
|    | • CH <sub>3</sub> CH <sub>2</sub> OH $\frac{Hot\ Conc}{H_2S_{O_4}}$ CH <sub>2</sub> = CH <sub>2</sub> + H <sub>2</sub> O 'A' 'B'                                        | 1/2       |   |
|    | <ul> <li>सांद्र H₂SO₄ एक निर्जलीकारक के रूप में काम करता है</li> </ul>                                                                                                  | 1/2       |   |
|    | $\begin{array}{ccc} H & H \\  &   &   \\ H - C = C - H + H_2 & \xrightarrow{N_i} CH_3 - CH_3 \end{array}$ 'B' 'C'                                                       | 1/2       |   |
|    | • C <sub>2</sub> H <sub>6</sub> + 7/2 O <sub>2</sub> —— > 2CO <sub>2</sub> + 3H <sub>2</sub> O                                                                          | 1/2       |   |
|    | 'C'<br>(संतुलन के लिए अंक ना काटे जाएँ)                                                                                                                                 |           |   |
|    | अथवा                                                                                                                                                                    |           |   |
|    |                                                                                                                                                                         |           |   |
|    |                                                                                                                                                                         |           |   |

|    |                                                                                                                                                                                                               | 1        | 1 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | (B)  H OH                                                                                                                                                                                                     | 1/2+1/2  |   |
|    | (ii) $CH_3COOH + C_2H_5OH \xrightarrow{a cid} CH_3COOC_2H_5$                                                                                                                                                  | 1/2      |   |
|    | 'A' 'B' • अम्ल की भूमिका – एक उत्प्रेरक की तरह                                                                                                                                                                | 1/2      |   |
|    | (iii) B (एस्टर) में तनु NaOH मिलाकर / साबुनीकरण / अम्ल या क्षार के<br>साथ जल मिलाकर / NaOH को मिलाने पर अम्ल का सोडियम लवण<br>प्राप्त होता है जिसे फिर से हाइड्रोलाइज् कर 'A ' को प्राप्त किया जा<br>सकता है। | 1        |   |
|    | (iv) गर्म एथेनॉल में क्षारीय पोटेशियम परमैंगनेट या अम्लीय पोटेशियम डाइक्रोमेट का विलयन डाल कर / $CH_3 - CH_2OH \xrightarrow{\text{Alkaline KMnO}_4 + \text{Heat}} CH_3COOH$                                   | 1        |   |
|    | (v) CO₂ /कार्बन डाइऑक्साइड                                                                                                                                                                                    | 1        | 5 |
|    | <b>ख</b> ण्ड - ड                                                                                                                                                                                              |          |   |
| 37 | (i) इन्द्रधनुष (कोई अन्य)<br>(ii) श्वेत प्रकाश का विक्षेपण होता है।                                                                                                                                           | 1        |   |
|    | <ul> <li>(iii) (A)</li> <li>वायुमंडल में जल की सूक्ष्म बूंदों का उपस्थित होना</li> <li>सूर्य पर्यवेक्षक के पीछे होना चाहिए।.</li> </ul>                                                                       | 1+1      |   |
|    | अथवा                                                                                                                                                                                                          |          |   |
|    | (iii) (B)                                                                                                                                                                                                     |          |   |
|    | Suntight a a                                                                                                                                                                                                  | ½ x4     |   |
|    | (आरेख का ½ अंक और प्रत्येक a, b, c का ½ अंक)                                                                                                                                                                  |          | 4 |
| 38 | (i) हाइड्रोक्लोरिक अम्ल /HCI और सोडियम हाइड्रोक्साइड/ NaOH                                                                                                                                                    | 1/2 +1/2 |   |
|    |                                                                                                                                                                                                               |          |   |

|    | - उदासीन                                                                                                              | 1/2            |   |
|----|-----------------------------------------------------------------------------------------------------------------------|----------------|---|
|    | - क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है।                                                                     | 1/2            |   |
|    | (iii) (A)                                                                                                             |                |   |
|    | <ul> <li>सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजित</li> </ul>                                                    | 1/2            |   |
|    | (विद्युत अपघटन) होकर उत्पन्न करता है:                                                                                 | <del>/</del> 2 |   |
|    | • कैथोड के पास NaOH विलयन                                                                                             |                |   |
|    | <ul> <li>एनोड पर Cl<sub>2</sub></li> </ul>                                                                            |                |   |
|    | <ul> <li>कैथोड पर H₂</li> </ul>                                                                                       | ½ x3           |   |
|    | 47410 4(112                                                                                                           |                |   |
|    | अथवा                                                                                                                  |                |   |
|    |                                                                                                                       |                |   |
|    | (iii)(B)                                                                                                              |                |   |
|    | सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त                                                 |                |   |
|    | किया जाता है:                                                                                                         |                |   |
|    | $-NaCI + H2O + CO2 + NH3 \longrightarrow NH4CI + NaHCO3$                                                              |                |   |
|    | -2NaHCO <sub>3</sub> $\xrightarrow{\text{Heat}}$ Na <sub>2</sub> CO <sub>3</sub> + H <sub>2</sub> O + CO <sub>2</sub> |                |   |
|    | - सोडियम कार्बोनेट के पुनःक्रिस्टलीकरण से धोने का सोडा प्राप्त होता है।                                               | ½ x 4          |   |
|    | $-Na2CO3 + 10H2O \longrightarrow Na2CO3 .10H2O$                                                                       |                | 4 |
| 39 | <b>(i)</b> प्रतिवर्ती क्रिया.:                                                                                        | 1/2            |   |
|    | <ul> <li>पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई</li> </ul>                                        | 1/2            |   |
|    | क्रिया ।                                                                                                              | 72             |   |
|    | (ii)                                                                                                                  |                |   |
|    | (a) प्रेरक तंत्रिका – मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है ।                                             | 1/2            |   |
|    | (b) प्रतिसारण तंत्रिका — संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।                                             | 1/2            |   |
|    | •                                                                                                                     |                |   |
|    | (iii)(A)<br>- केन्द्रीय तंत्रिका तंत्र.                                                                               |                |   |
|    |                                                                                                                       |                |   |
|    | संघटक: मस्तिष्क; मेरुरज्जु<br>-परिधीय त़ंत्रिका तंत्र                                                                 | ½ x4           |   |
|    |                                                                                                                       | 72 X4          |   |
|    | संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.                                                                              |                |   |
|    | अथवा                                                                                                                  |                |   |
|    | (iii)(B)                                                                                                              |                |   |
|    | (a)अग्र्मस्तिष्क / प्रमस्तिष्क                                                                                        |                |   |
|    | (b)अनुमस्तिष्क / पश्च मस्तिष्क                                                                                        |                |   |
|    | (c)मेडुला / पश्च मस्तिष्क                                                                                             | ½ x4           |   |
|    | (d)अंग्र्मस्तिष्क                                                                                                     |                |   |
|    |                                                                                                                       |                | 4 |

